Merge "Actually add directions to enable sandboxing"
diff --git a/NO_BUILD_AMD64 b/NO_BUILD_AMD64
index faa75a9..e80b47c 100644
--- a/NO_BUILD_AMD64
+++ b/NO_BUILD_AMD64
@@ -14,3 +14,6 @@
 -//y2016/wpilib/...
 -//y2016:download
 -//y2016:download_stripped
+-//y2016_bot3/wpilib/...
+-//y2016_bot3:download
+-//y2016_bot3:download_stripped
diff --git a/NO_BUILD_ROBORIO b/NO_BUILD_ROBORIO
index 5b9c693..839238a 100644
--- a/NO_BUILD_ROBORIO
+++ b/NO_BUILD_ROBORIO
@@ -1,9 +1,11 @@
 -@slycot_repo//...
 -//frc971/control_loops/python/...
 -//y2012/control_loops/python/...
+-//y2014_bot3/control_loops/python/...
 -//y2014/control_loops/python/...
 -//y2014_bot3/control_loops/python/...
 -//y2015/control_loops/python/...
 -//y2015_bot3/control_loops/python/...
 -//y2016/control_loops/python/...
+-//y2016_bot3/control_loops/python/...
 -//third_party/protobuf/...
diff --git a/aos/common/event.cc b/aos/common/event.cc
index ae32d39..af9c9c5 100644
--- a/aos/common/event.cc
+++ b/aos/common/event.cc
@@ -11,25 +11,28 @@
 }
 
 void Event::Wait() {
-  int ret;
-  do {
-    ret = futex_wait(&impl_);
-  } while (ret == 1);
-  if (ret == 0) return;
-  CHECK_EQ(-1, ret);
-  PLOG(FATAL, "futex_wait(%p) failed", &impl_);
+  while (__atomic_load_n(&impl_, __ATOMIC_SEQ_CST) == 0) {
+    const int ret = futex_wait(&impl_);
+    if (ret != 0) {
+      CHECK_EQ(-1, ret);
+      PLOG(FATAL, "futex_wait(%p) failed", &impl_);
+    }
+  }
 }
 
 bool Event::WaitTimeout(const ::aos::time::Time &timeout) {
   const auto timeout_timespec = timeout.ToTimespec();
-  int ret;
-  do {
-    ret = futex_wait_timeout(&impl_, &timeout_timespec);
-  } while (ret == 1);
-  if (ret == 0) return true;
-  if (ret == 2) return false;
-  CHECK_EQ(-1, ret);
-  PLOG(FATAL, "futex_wait(%p) failed", &impl_);
+  while (true) {
+    if (__atomic_load_n(&impl_, __ATOMIC_SEQ_CST) != 0) {
+      return true;
+    }
+    const int ret = futex_wait_timeout(&impl_, &timeout_timespec);
+    if (ret != 0) {
+      if (ret == 2) return false;
+      CHECK_EQ(-1, ret);
+      PLOG(FATAL, "futex_wait(%p) failed", &impl_);
+    }
+  }
 }
 
 // We're not going to expose the number woken because that's not easily portable
diff --git a/aos/common/time.h b/aos/common/time.h
index 40b72b0..ba795a9 100644
--- a/aos/common/time.h
+++ b/aos/common/time.h
@@ -28,8 +28,10 @@
 
   // Returns the epoch (0).
   static constexpr monotonic_clock::time_point epoch() {
-    return time_point(duration(0));
+    return time_point(zero());
   }
+
+  static constexpr monotonic_clock::duration zero() { return duration(0); }
 };
 
 namespace time {
@@ -146,8 +148,10 @@
   }
 
   // Construct a time representing the period of hertz.
-  static constexpr Time FromRate(int hertz) {
-    return Time(0, kNSecInSec / hertz);
+  static constexpr ::std::chrono::nanoseconds FromRate(int hertz) {
+    return ::std::chrono::duration_cast<::std::chrono::nanoseconds>(
+               ::std::chrono::seconds(1)) /
+           hertz;
   }
 
   // Checks whether or not this time is within amount nanoseconds of other.
diff --git a/aos/common/time_test.cc b/aos/common/time_test.cc
index 3ae82ab..e1811db 100644
--- a/aos/common/time_test.cc
+++ b/aos/common/time_test.cc
@@ -255,7 +255,7 @@
 }
 
 TEST(TimeTest, FromRate) {
-  EXPECT_EQ(MACRO_DARG(Time(0, Time::kNSecInSec / 100)), Time::FromRate(100));
+  EXPECT_EQ(::std::chrono::milliseconds(10), Time::FromRate(100));
 }
 
 // Test the monotonic_clock and sleep_until functions.
diff --git a/aos/common/type_traits.h b/aos/common/type_traits.h
index 4b5fa8c..53fae23 100644
--- a/aos/common/type_traits.h
+++ b/aos/common/type_traits.h
@@ -12,7 +12,7 @@
 struct has_trivial_copy_assign : public std::integral_constant<bool,
 // This changed between 4.4.5 and 4.6.3. Unless somebody discovers otherwise,
 // 4.6 seems like a reasonable place to switch.
-#if ((__GNUC__ < 4) || (__GNUC_MINOR__ < 6)) && !defined(__clang__)
+#if ((__GNUC__ < 4) || (__GNUC__ == 4 && __GNUC_MINOR__ < 6)) && !defined(__clang__)
     ::std::has_trivial_assign<Tp>::value> {};
 #else
     ::std::has_trivial_copy_assign<Tp>::value> {};
diff --git a/aos/common/util/phased_loop.cc b/aos/common/util/phased_loop.cc
index b5804c8..9c81ffb 100644
--- a/aos/common/util/phased_loop.cc
+++ b/aos/common/util/phased_loop.cc
@@ -10,15 +10,21 @@
              frequency + Time::InUS(offset));
 }
 
-int PhasedLoop::Iterate(const Time &now) {
-  const Time next_time = Time::InNS(((now - offset_).ToNSec() + 1) /
-                                    interval_.ToNSec() * interval_.ToNSec()) +
-                         ((now < offset_) ? Time::kZero : interval_) + offset_;
+int PhasedLoop::Iterate(const monotonic_clock::time_point now) {
+  const monotonic_clock::time_point next_time =
+      monotonic_clock::time_point(
+          (((now - offset_).time_since_epoch() + monotonic_clock::duration(1)) /
+           interval_) *
+          interval_) +
+      ((now.time_since_epoch() < offset_) ? monotonic_clock::zero()
+                                          : interval_) +
+      offset_;
 
-  const Time difference = next_time - last_time_;
-  const int result = difference.ToNSec() / interval_.ToNSec();
+  const monotonic_clock::duration difference = next_time - last_time_;
+  const int result = difference / interval_;
   CHECK_EQ(difference, interval_ * result);
-  CHECK_EQ(0, (next_time - offset_).ToNSec() % interval_.ToNSec());
+  CHECK_EQ(
+      0, (next_time - offset_).time_since_epoch().count() % interval_.count());
   CHECK_GE(next_time, now);
   CHECK_LE(next_time - now, interval_);
   last_time_ = next_time;
diff --git a/aos/common/util/phased_loop.h b/aos/common/util/phased_loop.h
index fc0f247..7614ed2 100644
--- a/aos/common/util/phased_loop.h
+++ b/aos/common/util/phased_loop.h
@@ -22,40 +22,47 @@
   //   ...
   //   10000.1s
   // offset must be >= Time::kZero and < interval.
-  PhasedLoop(const Time &interval, const Time &offset = Time::kZero)
+  PhasedLoop(
+      const monotonic_clock::duration interval,
+      const monotonic_clock::duration offset = monotonic_clock::duration(0))
       : interval_(interval), offset_(offset), last_time_(offset) {
-    CHECK_GE(offset, Time::kZero);
-    CHECK_GT(interval, Time::kZero);
+    CHECK_GE(offset, monotonic_clock::duration(0));
+    CHECK_GT(interval, monotonic_clock::duration(0));
     CHECK_LT(offset, interval);
     Reset();
   }
 
   // Resets the count of skipped iterations.
-  // Iterate(now) will return 1 and set sleep_time() to something within
-  // interval of now.
-  void Reset(const Time &now = Time::Now()) { Iterate(now - interval_); }
+  // Iterate(monotonic_now) will return 1 and set sleep_time() to something
+  // within interval of monotonic_now.
+  void Reset(const monotonic_clock::time_point monotonic_now =
+                 monotonic_clock::now()) {
+    Iterate(monotonic_now - interval_);
+  }
 
-  // Calculates the next time to run after now.
+  // Calculates the next time to run after monotonic_now.
   // The result can be retrieved with sleep_time().
   // Returns the number of iterations which have passed (1 if this is called
-  // often enough). This can be < 1 iff now goes backwards between calls.
-  int Iterate(const Time &now = Time::Now());
+  // often enough). This can be < 1 iff monotonic_now goes backwards between
+  // calls.
+  int Iterate(const monotonic_clock::time_point monotonic_now =
+                  monotonic_clock::now());
 
   // Sleeps until the next time and returns the number of iterations which have
   // passed.
   int SleepUntilNext() {
-    const int r = Iterate(Time::Now());
-    SleepUntil(sleep_time());
+    const int r = Iterate(monotonic_clock::now());
+    ::std::this_thread::sleep_until(sleep_time());
     return r;
   }
 
-  const Time &sleep_time() const { return last_time_; }
+  monotonic_clock::time_point sleep_time() const { return last_time_; }
 
  private:
-  const Time interval_, offset_;
+  const monotonic_clock::duration interval_, offset_;
 
   // The time we most recently slept until.
-  Time last_time_ = Time::kZero;
+  monotonic_clock::time_point last_time_ = monotonic_clock::epoch();
 };
 
 }  // namespace time
diff --git a/aos/common/util/phased_loop_test.cc b/aos/common/util/phased_loop_test.cc
index 1641a92..b013c2e 100644
--- a/aos/common/util/phased_loop_test.cc
+++ b/aos/common/util/phased_loop_test.cc
@@ -8,111 +8,115 @@
 namespace time {
 namespace testing {
 
+using ::std::chrono::milliseconds;
+
 class PhasedLoopTest : public ::testing::Test {
  protected:
-  PhasedLoopTest() {
-    ::aos::testing::EnableTestLogging();
-  }
+  PhasedLoopTest() { ::aos::testing::EnableTestLogging(); }
 };
 
 typedef PhasedLoopTest PhasedLoopDeathTest;
 
+monotonic_clock::time_point InMs(int ms) {
+  return monotonic_clock::time_point(::std::chrono::milliseconds(ms));
+}
+
 TEST_F(PhasedLoopTest, Reset) {
   {
-    PhasedLoop loop(Time::InMS(100), Time::kZero);
+    PhasedLoop loop(milliseconds(100), milliseconds(0));
 
-    loop.Reset(Time::kZero);
-    EXPECT_EQ(Time::InMS(0), loop.sleep_time());
-    EXPECT_EQ(1, loop.Iterate(Time::kZero));
-    EXPECT_EQ(Time::InMS(100), loop.sleep_time());
+    loop.Reset(monotonic_clock::epoch());
+    EXPECT_EQ(InMs(0), loop.sleep_time());
+    EXPECT_EQ(1, loop.Iterate(monotonic_clock::epoch()));
+    EXPECT_EQ(InMs(100), loop.sleep_time());
 
-    loop.Reset(Time::InMS(99));
-    EXPECT_EQ(Time::InMS(0), loop.sleep_time());
-    EXPECT_EQ(1, loop.Iterate(Time::InMS(99)));
-    EXPECT_EQ(Time::InMS(100), loop.sleep_time());
+    loop.Reset(InMs(99));
+    EXPECT_EQ(InMs(0), loop.sleep_time());
+    EXPECT_EQ(1, loop.Iterate(InMs(99)));
+    EXPECT_EQ(InMs(100), loop.sleep_time());
 
-    loop.Reset(Time::InMS(100));
-    EXPECT_EQ(Time::InMS(100), loop.sleep_time());
-    EXPECT_EQ(1, loop.Iterate(Time::InMS(199)));
-    EXPECT_EQ(Time::InMS(200), loop.sleep_time());
+    loop.Reset(InMs(100));
+    EXPECT_EQ(InMs(100), loop.sleep_time());
+    EXPECT_EQ(1, loop.Iterate(InMs(199)));
+    EXPECT_EQ(InMs(200), loop.sleep_time());
 
-    loop.Reset(Time::InMS(101));
-    EXPECT_EQ(Time::InMS(100), loop.sleep_time());
-    EXPECT_EQ(1, loop.Iterate(Time::InMS(101)));
-    EXPECT_EQ(Time::InMS(200), loop.sleep_time());
+    loop.Reset(InMs(101));
+    EXPECT_EQ(InMs(100), loop.sleep_time());
+    EXPECT_EQ(1, loop.Iterate(InMs(101)));
+    EXPECT_EQ(InMs(200), loop.sleep_time());
   }
   {
-    PhasedLoop loop(Time::InMS(100), Time::InMS(1));
-    loop.Reset(Time::kZero);
-    EXPECT_EQ(Time::InMS(-99), loop.sleep_time());
-    EXPECT_EQ(1, loop.Iterate(Time::kZero));
-    EXPECT_EQ(Time::InMS(1), loop.sleep_time());
+    PhasedLoop loop(milliseconds(100), milliseconds(1));
+    loop.Reset(monotonic_clock::epoch());
+    EXPECT_EQ(InMs(-99), loop.sleep_time());
+    EXPECT_EQ(1, loop.Iterate(monotonic_clock::epoch()));
+    EXPECT_EQ(InMs(1), loop.sleep_time());
   }
   {
-    PhasedLoop loop(Time::InMS(100), Time::InMS(99));
+    PhasedLoop loop(milliseconds(100), milliseconds(99));
 
-    loop.Reset(Time::kZero);
-    EXPECT_EQ(Time::InMS(-1), loop.sleep_time());
-    EXPECT_EQ(1, loop.Iterate(Time::kZero));
-    EXPECT_EQ(Time::InMS(99), loop.sleep_time());
+    loop.Reset(monotonic_clock::epoch());
+    EXPECT_EQ(InMs(-1), loop.sleep_time());
+    EXPECT_EQ(1, loop.Iterate(monotonic_clock::epoch()));
+    EXPECT_EQ(InMs(99), loop.sleep_time());
 
-    loop.Reset(Time::InMS(98));
-    EXPECT_EQ(Time::InMS(-1), loop.sleep_time());
-    EXPECT_EQ(1, loop.Iterate(Time::InMS(98)));
-    EXPECT_EQ(Time::InMS(99), loop.sleep_time());
+    loop.Reset(InMs(98));
+    EXPECT_EQ(InMs(-1), loop.sleep_time());
+    EXPECT_EQ(1, loop.Iterate(InMs(98)));
+    EXPECT_EQ(InMs(99), loop.sleep_time());
 
-    loop.Reset(Time::InMS(99));
-    EXPECT_EQ(Time::InMS(99), loop.sleep_time());
-    EXPECT_EQ(1, loop.Iterate(Time::InMS(99)));
-    EXPECT_EQ(Time::InMS(199), loop.sleep_time());
+    loop.Reset(InMs(99));
+    EXPECT_EQ(InMs(99), loop.sleep_time());
+    EXPECT_EQ(1, loop.Iterate(InMs(99)));
+    EXPECT_EQ(InMs(199), loop.sleep_time());
 
-    loop.Reset(Time::InMS(100));
-    EXPECT_EQ(Time::InMS(99), loop.sleep_time());
-    EXPECT_EQ(1, loop.Iterate(Time::InMS(100)));
-    EXPECT_EQ(Time::InMS(199), loop.sleep_time());
+    loop.Reset(InMs(100));
+    EXPECT_EQ(InMs(99), loop.sleep_time());
+    EXPECT_EQ(1, loop.Iterate(InMs(100)));
+    EXPECT_EQ(InMs(199), loop.sleep_time());
   }
 }
 
 TEST_F(PhasedLoopTest, Iterate) {
   {
-    PhasedLoop loop(Time::InMS(100), Time::InMS(99));
-    loop.Reset(Time::kZero);
-    EXPECT_EQ(1, loop.Iterate(Time::kZero));
-    EXPECT_EQ(Time::InMS(99), loop.sleep_time());
-    EXPECT_EQ(1, loop.Iterate(Time::InMS(100)));
-    EXPECT_EQ(Time::InMS(199), loop.sleep_time());
-    EXPECT_EQ(0, loop.Iterate(Time::InMS(100)));
-    EXPECT_EQ(Time::InMS(199), loop.sleep_time());
-    EXPECT_EQ(0, loop.Iterate(Time::InMS(101)));
-    EXPECT_EQ(Time::InMS(199), loop.sleep_time());
-    EXPECT_EQ(0, loop.Iterate(Time::InMS(198)));
-    EXPECT_EQ(Time::InMS(199), loop.sleep_time());
-    EXPECT_EQ(1, loop.Iterate(Time::InMS(199)));
-    EXPECT_EQ(Time::InMS(299), loop.sleep_time());
-    EXPECT_EQ(1, loop.Iterate(Time::InMS(300)));
-    EXPECT_EQ(Time::InMS(399), loop.sleep_time());
-    EXPECT_EQ(3, loop.Iterate(Time::InMS(600)));
-    EXPECT_EQ(Time::InMS(699), loop.sleep_time());
+    PhasedLoop loop(milliseconds(100), milliseconds(99));
+    loop.Reset(monotonic_clock::epoch());
+    EXPECT_EQ(1, loop.Iterate(monotonic_clock::epoch()));
+    EXPECT_EQ(InMs(99), loop.sleep_time());
+    EXPECT_EQ(1, loop.Iterate(InMs(100)));
+    EXPECT_EQ(InMs(199), loop.sleep_time());
+    EXPECT_EQ(0, loop.Iterate(InMs(100)));
+    EXPECT_EQ(InMs(199), loop.sleep_time());
+    EXPECT_EQ(0, loop.Iterate(InMs(101)));
+    EXPECT_EQ(InMs(199), loop.sleep_time());
+    EXPECT_EQ(0, loop.Iterate(InMs(198)));
+    EXPECT_EQ(InMs(199), loop.sleep_time());
+    EXPECT_EQ(1, loop.Iterate(InMs(199)));
+    EXPECT_EQ(InMs(299), loop.sleep_time());
+    EXPECT_EQ(1, loop.Iterate(InMs(300)));
+    EXPECT_EQ(InMs(399), loop.sleep_time());
+    EXPECT_EQ(3, loop.Iterate(InMs(600)));
+    EXPECT_EQ(InMs(699), loop.sleep_time());
   }
   {
-    PhasedLoop loop(Time::InMS(100), Time::InMS(1));
-    loop.Reset(Time::kZero);
-    EXPECT_EQ(1, loop.Iterate(Time::kZero));
-    EXPECT_EQ(Time::InMS(1), loop.sleep_time());
-    EXPECT_EQ(1, loop.Iterate(Time::InMS(100)));
-    EXPECT_EQ(Time::InMS(101), loop.sleep_time());
-    EXPECT_EQ(0, loop.Iterate(Time::InMS(100)));
-    EXPECT_EQ(Time::InMS(101), loop.sleep_time());
-    EXPECT_EQ(1, loop.Iterate(Time::InMS(103)));
-    EXPECT_EQ(Time::InMS(201), loop.sleep_time());
-    EXPECT_EQ(0, loop.Iterate(Time::InMS(198)));
-    EXPECT_EQ(Time::InMS(201), loop.sleep_time());
-    EXPECT_EQ(0, loop.Iterate(Time::InMS(200)));
-    EXPECT_EQ(Time::InMS(201), loop.sleep_time());
-    EXPECT_EQ(1, loop.Iterate(Time::InMS(201)));
-    EXPECT_EQ(Time::InMS(301), loop.sleep_time());
-    EXPECT_EQ(3, loop.Iterate(Time::InMS(600)));
-    EXPECT_EQ(Time::InMS(601), loop.sleep_time());
+    PhasedLoop loop(milliseconds(100), milliseconds(1));
+    loop.Reset(monotonic_clock::epoch());
+    EXPECT_EQ(1, loop.Iterate(monotonic_clock::epoch()));
+    EXPECT_EQ(InMs(1), loop.sleep_time());
+    EXPECT_EQ(1, loop.Iterate(InMs(100)));
+    EXPECT_EQ(InMs(101), loop.sleep_time());
+    EXPECT_EQ(0, loop.Iterate(InMs(100)));
+    EXPECT_EQ(InMs(101), loop.sleep_time());
+    EXPECT_EQ(1, loop.Iterate(InMs(103)));
+    EXPECT_EQ(InMs(201), loop.sleep_time());
+    EXPECT_EQ(0, loop.Iterate(InMs(198)));
+    EXPECT_EQ(InMs(201), loop.sleep_time());
+    EXPECT_EQ(0, loop.Iterate(InMs(200)));
+    EXPECT_EQ(InMs(201), loop.sleep_time());
+    EXPECT_EQ(1, loop.Iterate(InMs(201)));
+    EXPECT_EQ(InMs(301), loop.sleep_time());
+    EXPECT_EQ(3, loop.Iterate(InMs(600)));
+    EXPECT_EQ(InMs(601), loop.sleep_time());
   }
 }
 
@@ -120,40 +124,42 @@
 // This seems like a rare case at first, but starting from zero needs to
 // work, which means negatives should too.
 TEST_F(PhasedLoopTest, CrossingZero) {
-  PhasedLoop loop(Time::InMS(100), Time::InMS(1));
-  loop.Reset(Time::InMS(-1000));
-  EXPECT_EQ(Time::InMS(-1099), loop.sleep_time());
-  EXPECT_EQ(9, loop.Iterate(Time::InMS(-250)));
-  EXPECT_EQ(Time::InMS(-199), loop.sleep_time());
-  EXPECT_EQ(1, loop.Iterate(Time::InMS(-199)));
-  EXPECT_EQ(Time::InMS(-99), loop.sleep_time());
-  EXPECT_EQ(1, loop.Iterate(Time::InMS(-90)));
-  EXPECT_EQ(Time::InMS(1), loop.sleep_time());
-  EXPECT_EQ(0, loop.Iterate(Time::InMS(0)));
-  EXPECT_EQ(Time::InMS(1), loop.sleep_time());
-  EXPECT_EQ(1, loop.Iterate(Time::InMS(1)));
-  EXPECT_EQ(Time::InMS(101), loop.sleep_time());
+  PhasedLoop loop(milliseconds(100), milliseconds(1));
+  loop.Reset(InMs(-1000));
+  EXPECT_EQ(InMs(-1099), loop.sleep_time());
+  EXPECT_EQ(9, loop.Iterate(InMs(-250)));
+  EXPECT_EQ(InMs(-199), loop.sleep_time());
+  EXPECT_EQ(1, loop.Iterate(InMs(-199)));
+  EXPECT_EQ(InMs(-99), loop.sleep_time());
+  EXPECT_EQ(1, loop.Iterate(InMs(-90)));
+  EXPECT_EQ(InMs(1), loop.sleep_time());
+  EXPECT_EQ(0, loop.Iterate(InMs(0)));
+  EXPECT_EQ(InMs(1), loop.sleep_time());
+  EXPECT_EQ(1, loop.Iterate(InMs(1)));
+  EXPECT_EQ(InMs(101), loop.sleep_time());
 
-  EXPECT_EQ(0, loop.Iterate(Time::InMS(2)));
-  EXPECT_EQ(Time::InMS(101), loop.sleep_time());
+  EXPECT_EQ(0, loop.Iterate(InMs(2)));
+  EXPECT_EQ(InMs(101), loop.sleep_time());
 
-  EXPECT_EQ(-2, loop.Iterate(Time::InMS(-101)));
-  EXPECT_EQ(Time::InMS(-99), loop.sleep_time());
-  EXPECT_EQ(1, loop.Iterate(Time::InMS(-99)));
-  EXPECT_EQ(Time::InMS(1), loop.sleep_time());
+  EXPECT_EQ(-2, loop.Iterate(InMs(-101)));
+  EXPECT_EQ(InMs(-99), loop.sleep_time());
+  EXPECT_EQ(1, loop.Iterate(InMs(-99)));
+  EXPECT_EQ(InMs(1), loop.sleep_time());
 
-  EXPECT_EQ(0, loop.Iterate(Time::InMS(-99)));
-  EXPECT_EQ(Time::InMS(1), loop.sleep_time());
+  EXPECT_EQ(0, loop.Iterate(InMs(-99)));
+  EXPECT_EQ(InMs(1), loop.sleep_time());
 }
 
 // Tests that passing invalid values to the constructor dies correctly.
 TEST_F(PhasedLoopDeathTest, InvalidValues) {
-  EXPECT_DEATH(PhasedLoop(Time::InMS(1), Time::InMS(2)), ".*offset<interval.*");
-  EXPECT_DEATH(PhasedLoop(Time::InMS(1), Time::InMS(1)), ".*offset<interval.*");
-  EXPECT_DEATH(PhasedLoop(Time::InMS(1), Time::InMS(-1)),
-               ".*offset>=Time::kZero.*");
-  EXPECT_DEATH(PhasedLoop(Time::InMS(0), Time::InMS(0)),
-               ".*interval>Time::kZero.*");
+  EXPECT_DEATH(PhasedLoop(milliseconds(1), milliseconds(2)),
+               ".*offset<interval.*");
+  EXPECT_DEATH(PhasedLoop(milliseconds(1), milliseconds(1)),
+               ".*offset<interval.*");
+  EXPECT_DEATH(PhasedLoop(milliseconds(1), milliseconds(-1)),
+               ".*offset>=monotonic_clock::duration\\(0\\).*");
+  EXPECT_DEATH(PhasedLoop(milliseconds(0), milliseconds(0)),
+               ".*interval>monotonic_clock::duration\\(0\\).*");
 }
 
 }  // namespace testing
diff --git a/aos/linux_code/ipc_lib/aos_sync.cc b/aos/linux_code/ipc_lib/aos_sync.cc
index 92eb1a1..b0b560e 100644
--- a/aos/linux_code/ipc_lib/aos_sync.cc
+++ b/aos/linux_code/ipc_lib/aos_sync.cc
@@ -954,9 +954,6 @@
 
 int futex_wait_timeout(aos_futex *m, const struct timespec *timeout) {
   RunObservers run_observers(m, false);
-  if (__atomic_load_n(m, __ATOMIC_SEQ_CST) != 0) {
-    return 0;
-  }
   const int ret = sys_futex_wait(FUTEX_WAIT, m, 0, timeout);
   if (ret != 0) {
     if (ret == -EINTR) {
diff --git a/aos/linux_code/ipc_lib/aos_sync.h b/aos/linux_code/ipc_lib/aos_sync.h
index 3495e73..5b7a865 100644
--- a/aos/linux_code/ipc_lib/aos_sync.h
+++ b/aos/linux_code/ipc_lib/aos_sync.h
@@ -111,9 +111,10 @@
 // example messages are available to read on a queue), use the condition_
 // functions or there will be race conditions.
 
-// Wait for the futex to be set. Will return immediately if it's already set.
+// Wait for the futex to be set. Will return immediately if it's already set
+// (after a syscall).
 // Returns 0 if successful or it was already set, 1 if interrupted by a signal,
-// or -1 with an error in errno.
+// or -1 with an error in errno. Can return 0 spuriously.
 int futex_wait(aos_futex *m) __attribute__((warn_unused_result));
 // The same as futex_wait except returns 2 if it times out.
 int futex_wait_timeout(aos_futex *m, const struct timespec *timeout)
diff --git a/aos/linux_code/ipc_lib/ipc_comparison.cc b/aos/linux_code/ipc_lib/ipc_comparison.cc
index 0a57ded..f375a17 100644
--- a/aos/linux_code/ipc_lib/ipc_comparison.cc
+++ b/aos/linux_code/ipc_lib/ipc_comparison.cc
@@ -17,6 +17,7 @@
 #include <thread>
 #include <memory>
 #include <string>
+#include <atomic>
 
 #include "aos/common/logging/logging.h"
 #include "aos/common/logging/implementations.h"
@@ -811,7 +812,7 @@
     return 1;
   }
 
-  bool done = false;
+  ::std::atomic<bool> done{false};
 
   ::std::thread server([&ping_ponger, &done]() {
     if (FLAGS_server_priority > 0) {
@@ -854,6 +855,11 @@
 
   const time::Time end = time::Time::Now();
 
+  // Try to make sure the server thread gets past its check of done so our
+  // Ping() down below doesn't hang. Kind of lame, but doing better would
+  // require complicating the interface to each implementation which isn't worth
+  // it here.
+  ::std::this_thread::sleep_for(::std::chrono::milliseconds(200));
   done = true;
   ping_ponger->PingData();
   ping_ponger->Ping();
diff --git a/frc971/control_loops/drivetrain/drivetrain.cc b/frc971/control_loops/drivetrain/drivetrain.cc
index f2b14a9..5757b58 100644
--- a/frc971/control_loops/drivetrain/drivetrain.cc
+++ b/frc971/control_loops/drivetrain/drivetrain.cc
@@ -107,6 +107,8 @@
       right_gear_ = ComputeGear(position->right_shifter_position,
                                 dt_config_.right_drive, right_high_requested_);
       break;
+    case ShifterType::NO_SHIFTER:
+      break;
   }
 
   kf_.set_controller_index(ControllerIndexFromGears());
diff --git a/frc971/control_loops/drivetrain/drivetrain_config.h b/frc971/control_loops/drivetrain/drivetrain_config.h
index ea76ca9..24cc628 100644
--- a/frc971/control_loops/drivetrain/drivetrain_config.h
+++ b/frc971/control_loops/drivetrain/drivetrain_config.h
@@ -12,11 +12,12 @@
 
 enum class ShifterType : int32_t {
   HALL_EFFECT_SHIFTER = 0,  // Detect when inbetween gears.
-  SIMPLE_SHIFTER = 1,  // Switch gears without speedmatch logic.
+  SIMPLE_SHIFTER = 1,       // Switch gears without speedmatch logic.
+  NO_SHIFTER = 2,           // Only one gear ratio.
 };
 
 enum class LoopType : int32_t {
-  OPEN_LOOP = 0,  // Only use open loop logic.
+  OPEN_LOOP = 0,    // Only use open loop logic.
   CLOSED_LOOP = 1,  // Add in closed loop calculation.
 };
 
@@ -32,10 +33,10 @@
   ::std::function<StateFeedbackLoop<2, 2, 2>()> make_v_drivetrain_loop;
   ::std::function<StateFeedbackLoop<7, 2, 3>()> make_kf_drivetrain_loop;
 
-  double dt;  // Control loop time step.
+  double dt;            // Control loop time step.
   double robot_radius;  // Robot radius, in meters.
   double wheel_radius;  // Wheel radius, in meters.
-  double v;  // Motor velocity constant.
+  double v;             // Motor velocity constant.
 
   // Gear ratios, from wheel to motor shaft.
   double high_gear_ratio;
diff --git a/frc971/wpilib/pdp_fetcher.cc b/frc971/wpilib/pdp_fetcher.cc
index 4e6be32..846de60 100644
--- a/frc971/wpilib/pdp_fetcher.cc
+++ b/frc971/wpilib/pdp_fetcher.cc
@@ -1,5 +1,7 @@
 #include "frc971/wpilib/pdp_fetcher.h"
 
+#include <chrono>
+
 #include "aos/common/logging/queue_logging.h"
 #include "aos/linux_code/init.h"
 #include "aos/common/util/phased_loop.h"
@@ -12,8 +14,8 @@
   ::aos::SetCurrentThreadName("PDPFetcher");
   ::std::unique_ptr<PowerDistributionPanel> pdp(new PowerDistributionPanel());
 
-  ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(20),
-                                      ::aos::time::Time::InMS(4));
+  ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(20),
+                                      ::std::chrono::milliseconds(4));
 
   while (true) {
     {
diff --git a/y2012/wpilib/wpilib_interface.cc b/y2012/wpilib/wpilib_interface.cc
index 6702dc4..290f067 100644
--- a/y2012/wpilib/wpilib_interface.cc
+++ b/y2012/wpilib/wpilib_interface.cc
@@ -3,6 +3,7 @@
 #include <unistd.h>
 #include <inttypes.h>
 
+#include <chrono>
 #include <thread>
 #include <mutex>
 #include <functional>
@@ -104,8 +105,8 @@
         &DriverStation::GetInstance();
 #endif
 
-    ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
-                                        ::aos::time::Time::InMS(4));
+    ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
+                                        ::std::chrono::milliseconds(4));
 
     ::aos::SetCurrentThreadRealtimePriority(40);
     while (run_) {
@@ -183,8 +184,8 @@
     ::aos::SetCurrentThreadName("Solenoids");
     ::aos::SetCurrentThreadRealtimePriority(27);
 
-    ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(20),
-                                        ::aos::time::Time::InMS(1));
+    ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(20),
+                                        ::std::chrono::milliseconds(1));
 
     while (run_) {
       {
diff --git a/y2014/control_loops/python/extended_lqr.tex b/y2014/control_loops/python/extended_lqr.tex
new file mode 100644
index 0000000..52d0949
--- /dev/null
+++ b/y2014/control_loops/python/extended_lqr.tex
@@ -0,0 +1,766 @@
+\documentclass[a4paper,12pt]{article}
+\usepackage{amsmath}
+\begin{document}
+
+% From http://www.eecs.tufts.edu/~khan/Courses/Spring2013/EE194/Lecs/Lec9and10.pdf
+% and http://www.cs.unc.edu/~wens/WAFR2014-Sun.pdf
+%   (which references http://maeresearch.ucsd.edu/skelton/publications/weiwei_ilqg_CDC43.pdf)
+% and http://arl.cs.utah.edu/pubs/ISRR2013.pdf
+
+\section{Backwards Pass}
+
+Let's start with some definitions for the standard LQR controller.
+$c_t(\boldsymbol{x}, \boldsymbol{u})$ is the cost for the iteration $t$ given that we are at $\boldsymbol{x}$ and are going to apply $\boldsymbol{u}$ for one cycle.
+$v_t(\boldsymbol{x})$ is the optimal cost-to-go for the starting point $\boldsymbol{x}$ at step $t$.
+$v_N(\boldsymbol{x})$ may be defined to be a different final cost from $v_t(\boldsymbol{x})$ if need be, where $N$ is the horizon.
+
+$$\begin{array}{rcl}
+c_t(\boldsymbol{x}, \boldsymbol{u}) &=&
+  \frac{1}{2}
+    \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{u} \end{bmatrix}^T
+    \begin{bmatrix} Q_t & P_t^T \\ P_t & R_t \end{bmatrix}
+    \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{u} \end{bmatrix} +
+  \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{u} \end{bmatrix}^T
+    \begin{bmatrix} \boldsymbol{q}_t \\ \boldsymbol{r}_t \end{bmatrix} +
+  q_t \\
+v_{t + 1}(\boldsymbol{x}) &=&
+  \frac{1}{2} \boldsymbol{x}^T S_{t + 1} \boldsymbol{x} + \boldsymbol{x}^T \boldsymbol{s}_{t + 1} + s_{t + 1} \\
+
+g_t(\boldsymbol{x}_t, \boldsymbol{u}_t) = \boldsymbol{x}_{t + 1}(\boldsymbol{u}_t) &=&
+  A_{t} \boldsymbol{x}_t + B_t \boldsymbol{u}_t + \boldsymbol{c}_{t} \\
+
+v_{t}(\boldsymbol{x}_t, \boldsymbol{u}_t) &=&
+  v_{t+1}(\boldsymbol{x}_{t+1}) +
+  c_t(\boldsymbol{x}_t, \boldsymbol{u}_t) \\\
+ &=&
+  v_{t+1}(g_t(\boldsymbol{x}_{t}, \boldsymbol{u}_t)) +
+  c_t(\boldsymbol{x}_t, \boldsymbol{u}_t)
+  \\
+\end{array}$$
+
+Now, let's calculate $v_t(\boldsymbol{x})$ given $v_{t+1}(\boldsymbol{x})$ and the step cost from $c_t(\boldsymbol{x})$.
+This tells us the cost of applying $\boldsymbol{u}$ starting from $\boldsymbol{x}$.
+We will then optimize over all $\boldsymbol{u}$ to find the optimal next state and cost for that state.
+This lets us then use dynamic programing methods to work out the optimal $\boldsymbol{x}$ and $\boldsymbol{u}$ at each timestep.
+
+We want to get a quadratic solution of the form
+$$v_{t}(\boldsymbol{x}) =
+  \frac{1}{2} \boldsymbol{x}^T S_{t} \boldsymbol{x} + \boldsymbol{x}^T \boldsymbol{s}_{t} + s_{t}$$ for each step.
+
+$$\begin{array}{rcl}
+v_{t}(\boldsymbol{x}, \boldsymbol{u}) &=&
+  \frac{1}{2} \left( A_{t}\boldsymbol{x} + B_{t}\boldsymbol{u} + \boldsymbol{c}_{t}\right)^T
+    S_{t + 1}
+    \left( A_{t}\boldsymbol{x} + B_{t}\boldsymbol{u} + \boldsymbol{c}_{t}\right) +
+  \left( A_{t}\boldsymbol{x} + B_{t}\boldsymbol{u} + \boldsymbol{c}_{t}\right)^T \boldsymbol{s}_{t + 1} +
+  s_{t + 1} + \\ &&
+  \frac{1}{2}
+    \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{u} \end{bmatrix}^T
+    \begin{bmatrix} Q_{t} & P_{t}^T \\ P_{t} & R_{t} \end{bmatrix}
+    \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{u} \end{bmatrix} +
+  \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{u} \end{bmatrix}^T
+    \begin{bmatrix} \boldsymbol{q}_{t} \\ \boldsymbol{r}_{t} \end{bmatrix} +
+    q_{t}
+\\
+&=&
+  \frac{1}{2} \left(
+    \boldsymbol{x}^T A_{t}^T S_{t + 1} A_{t} \boldsymbol{x} +
+    \boldsymbol{u}^T B_{t}^T S_{t + 1} A_{t} \boldsymbol{x} +
+    \boldsymbol{c}_t^T S_{t + 1} A_{t} \boldsymbol{x} + \right. \\ &&
+    \left. \boldsymbol{x}^T A_{t}^T S_{t + 1} B_{t} \boldsymbol{u} +
+    \boldsymbol{u}^T B_{t}^T S_{t + 1} B_{t} \boldsymbol{u} +
+    \boldsymbol{c}_t^T S_{t + 1} B_{t} \boldsymbol{u} + \right. \\ &&
+    \left. \boldsymbol{x}^T A_{t}^T S_{t + 1} \boldsymbol{c}_t +
+    \boldsymbol{u}^T B_{t}^T S_{t + 1} \boldsymbol{c}_t +
+    \boldsymbol{c}_t^T S_{t + 1} \boldsymbol{c}_t
+  \right) + \\ &&
+  \boldsymbol{x}^T A_{t}^T \boldsymbol{s}_{t + 1} +
+  \boldsymbol{u}^T B_{t}^T \boldsymbol{s}_{t + 1} +
+  \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} +
+  s_{t + 1} + \\ &&
+  \frac{1}{2} \left(\boldsymbol{x}^T Q_t \boldsymbol{x} + \boldsymbol{u}^T P_t \boldsymbol{x} + \boldsymbol{x}^T P_t^T \boldsymbol{u} + \boldsymbol{u}^T R_t \boldsymbol{u} \right) + \boldsymbol{x}^T \boldsymbol{q}_t + \boldsymbol{u}^T \boldsymbol{r}_t + q_t
+\\
+&=&
+  \frac{1}{2} \left(
+    \boldsymbol{x}^T \left( A_{t}^T S_{t + 1} A_{t} + Q_t \right) \boldsymbol{x} +
+    \boldsymbol{u}^T \left( B_{t}^T S_{t + 1} A_{t} + P_t \right) \boldsymbol{x} \right. + \\ &&
+    \left. \boldsymbol{x}^T \left( A_{t}^T S_{t + 1} B_{t} + P_t^T \right) \boldsymbol{u} +
+    \boldsymbol{u}^T \left( B_{t}^T S_{t + 1} B_{t} + R_t \right) \boldsymbol{u} \right) + \\ &&
+  \boldsymbol{x}^T \left(A_{t}^T \boldsymbol{s}_{t + 1} +
+  \boldsymbol{q}_t \right)+
+
+  \boldsymbol{u}^T \left( B_{t}^T \boldsymbol{s}_{t + 1} +
+  \boldsymbol{r}_t \right) +
+  \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + s_{t + 1} +
+  q_t + \\ &&
+  \frac{1}{2} \left( \boldsymbol{c}_t^T S_{t + 1} \boldsymbol{c}_t +
+     \boldsymbol{x}^T A_{t}^T S_{t + 1} \boldsymbol{c}_t +
+    \boldsymbol{u}^T B_{t}^T S_{t + 1} \boldsymbol{c}_t +
+    \boldsymbol{c}_t^T S_{t + 1} B_{t} \boldsymbol{u} +
+    \boldsymbol{c}_t^T S_{t + 1} A_{t} \boldsymbol{x} \right)
+\end{array}$$
+
+Now, let's find the optimal $\boldsymbol{u}$.  Do this by evaluating $\frac{\partial}{\partial \boldsymbol{u}} v_t(\boldsymbol{x}, \boldsymbol{u}) = 0$.
+
+$$\begin{array}{rcl}
+\frac{\partial}{\partial \boldsymbol{u}} v_{t}(\boldsymbol{x}, \boldsymbol{u}) &=& \frac{1}{2} \left( 2 \boldsymbol{u}^T \left( B_{t}^T S_{t + 1} B_{t} + R_t \right) + 2 \boldsymbol{x}^T \left( A_{t}^T S_{t + 1} B_{t} + P_t^T \right) + 2 \boldsymbol{c}_t^T S_{t + 1} B_{t} \right) + \\&&\boldsymbol{s}_{t + 1}^T B_{t} + \boldsymbol{r}_t^T \\
+
+\frac{\partial}{\partial \boldsymbol{u}} v_{t}(\boldsymbol{x}, \boldsymbol{u}) &=& \boldsymbol{u}^T \left( B_{t}^T S_{t + 1} B_{t} + R_t \right) + \boldsymbol{x}^T \left( A_{t}^T S_{t + 1} B_{t} + P_t^T \right) + \boldsymbol{c}_t^T S_{t + 1} B_{t} + \boldsymbol{s}_{t + 1}^T B_{t} + \boldsymbol{r}_t^T \\
+0 &=& \boldsymbol{u}^T \left( B_{t}^T S_{t + 1} B_{t} + R_t \right) + \boldsymbol{x}^T \left( A_{t}^T S_{t + 1} B_{t} + P_t^T \right) + \boldsymbol{c}_t^T S_{t + 1} B_{t} + \boldsymbol{s}_{t + 1}^T B_{t} + \boldsymbol{r}_t^T
+\end{array}$$
+$$\begin{array}{rcl}
+\boldsymbol{u}^T \left( B_{t}^T S_{t + 1} B_{t} + R_t \right) &=& - \boldsymbol{x}^T \left( A_{t}^T S_{t + 1} B_{t} + P_t^T \right) - \boldsymbol{c}_t^T S_{t + 1} B_{t} - \boldsymbol{s}_{t + 1}^T B_{t} - \boldsymbol{r}_t^T \\
+\left( B_{t}^T S_{t + 1} B_{t} + R_t \right) \boldsymbol{u} &=& - \left( B_{t}^T S_{t + 1} A_{t} + P_t \right) \boldsymbol{x} - B_t^T S_{t + 1} \boldsymbol{c}_t - B_{t}^T \boldsymbol{s}_{t + 1}- \boldsymbol{r}_t \\
+\boldsymbol{u} &=& - \left( B_{t}^T S_{t + 1} B_{t} + R_t \right) ^{-1} \left( \left( B_{t}^T S_{t + 1} A_{t} + P_t \right) \boldsymbol{x} + B_t^T S_{t + 1} \boldsymbol{c}_t + B_{t}^T \boldsymbol{s}_{t + 1} + \boldsymbol{r}_t \right)
+\end{array}$$
+
+This gives us the optimal $\boldsymbol{u}$.  There are some substitutions defined here from the 2013 paper which make it easier to read.
+Note: the 2014 paper uses different letters for these same quantities\dots
+\\
+$$\begin{array}{rcl}
+C_t &=& B^T_t S_{t + 1} A_t + P_t \\
+E_t &=&  B_{t}^T S_{t + 1} B_{t} + R_t \\
+L_t &=& - E_t ^{-1} C_t \\
+
+\boldsymbol{e}_t &=& B_t^T S_{t + 1} \boldsymbol{c}_t + B_{t}^T \boldsymbol{s}_{t + 1} + \boldsymbol{r}_t \\
+\boldsymbol{l}_t &=&  - E^{-1}_t \boldsymbol{e}_t \\
+
+D_t &=& A_t^T S_{t + 1} A_t + Q_t \\
+\boldsymbol{d}_t &=& A_t^T S_{t + 1} \boldsymbol{c}_t + A_{t}^T \boldsymbol{s}_{t + 1} + \boldsymbol{q}_t
+\\
+\boldsymbol{u} &=& L_t \boldsymbol{x} + \boldsymbol{l}_t
+\end{array}$$
+
+With these, we can simplify $\boldsymbol{u}$ a bit and make it look like the 2014 paper has it.
+
+$$\begin{array}{rcl}
+  \boldsymbol{u} &=& -E_t^{-1} \left( C_t \boldsymbol{x} + \boldsymbol{e}_t \right) \\
+  \boldsymbol{u} &=& -E_t^{-1} C_t \boldsymbol{x} - E_t^{-1} \boldsymbol{e}_t
+\end{array}$$
+
+For reference, here are some equivalences between the symbols used in the 2013
+paper (the ones we use) and the 2014 paper.
+TODO(Brian): Figure out where the ones in the 2014 paper are defined instead of
+guessing by pattern-matching.
+\\ \begin{tabular}{ | r | l | }
+  \hline
+  2013 paper (ours) & 2014 paper \\
+  \hline
+  $C_t$ & $E_t$ \\
+  $D_t$ & $C_t$ \\
+  $\boldsymbol{d}_t$ & $\boldsymbol{c}_t$ \\
+  $E_t$ & $D_t$ \\
+  $\boldsymbol{e}_t$ & $\boldsymbol{d}_t$ \\
+  \hline
+\end{tabular} \\
+
+Now, let's solve for the new cost function.
+
+$$\begin{array}{rcl}
+v_{t}(\boldsymbol{x}, \boldsymbol{u}) &=&
+  \frac{1}{2} \left(
+    \boldsymbol{x}^T \left( A_{t}^T S_{t + 1} A_{t} + Q_t \right) \boldsymbol{x} +
+    \boldsymbol{u}^T \left( B_{t}^T S_{t + 1} A_{t} + P_t \right) \boldsymbol{x} \right. + \\ &&
+    \left. \boldsymbol{x}^T \left( A_{t}^T S_{t + 1} B_{t} + P_t^T \right) \boldsymbol{u} +
+    \boldsymbol{u}^T \left( B_{t}^T S_{t + 1} B_{t} + R_t \right) \boldsymbol{u} \right) + \\ &&
+  \boldsymbol{x}^T \left(A_{t}^T \boldsymbol{s}_{t + 1} +
+  \boldsymbol{q}_t \right)+
+
+  \boldsymbol{u}^T \left( B_{t}^T \boldsymbol{s}_{t + 1} +
+  \boldsymbol{r}_t \right) +
+  \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + s_{t + 1} +
+  q_t + \\ &&
+  \frac{1}{2} \left( \boldsymbol{c}_t^T S_{t + 1} \boldsymbol{c}_t +
+     \boldsymbol{x}^T A_{t}^T S_{t + 1} \boldsymbol{c}_t +
+    \boldsymbol{u}^T B_{t}^T S_{t + 1} \boldsymbol{c}_t +
+    \boldsymbol{c}_t^T S_{t + 1} B_{t} \boldsymbol{u} +
+    \boldsymbol{c}_t^T S_{t + 1} A_{t} \boldsymbol{x} \right)
+\\
+&=&
+  \frac{1}{2} \left(
+    \boldsymbol{x}^T \left( A_{t}^T S_{t + 1} A_{t} + Q_t \right) \boldsymbol{x} +
+    \boldsymbol{u}^T \left( B_{t}^T S_{t + 1} A_{t} + P_t \right) \boldsymbol{x} \right. + \\ &&
+    \left. \boldsymbol{x}^T \left( A_{t}^T S_{t + 1} B_{t} + P_t^T \right) \boldsymbol{u} +
+    \boldsymbol{u}^T \left( B_{t}^T S_{t + 1} B_{t} + R_t \right) \boldsymbol{u} \right) + \\ &&
+
+  \boldsymbol{x}^T \left(A_{t}^T \boldsymbol{s}_{t + 1} + \boldsymbol{q}_t +
+    \frac{1}{2} A_{t}^T S_{t + 1} \boldsymbol{c}_t \right) + \\ &&
+
+  \boldsymbol{u}^T \left( B_{t}^T \boldsymbol{s}_{t + 1} + \boldsymbol{r}_t +
+    \frac{1}{2} B_{t}^T S_{t + 1} \boldsymbol{c}_t \right) + \\ &&
+
+  \frac{1}{2} \boldsymbol{c}_t^T S_{t + 1} \left( A_t \boldsymbol{x} +
+    B_t \boldsymbol{u} + \boldsymbol{c}_t \right) + \\ &&
+
+  \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + s_{t + 1} + q_t
+\\
+&=&
+  \frac{1}{2} \left(
+    \boldsymbol{x}^T \left( A_{t}^T S_{t + 1} A_{t} + Q_t \right) \boldsymbol{x} +
+    \boldsymbol{u}^T \left( B_{t}^T S_{t + 1} A_{t} + P_t \right) \boldsymbol{x} \right. + \\ &&
+    \left. \boldsymbol{x}^T \left( A_{t}^T S_{t + 1} B_{t} + P_t^T \right) \boldsymbol{u} +
+    \boldsymbol{u}^T \left( B_{t}^T S_{t + 1} B_{t} + R_t \right) \boldsymbol{u} \right) + \\ &&
+
+  \boldsymbol{x}^T \left(A_{t}^T \boldsymbol{s}_{t + 1} + \boldsymbol{q}_t +
+    A_{t}^T S_{t + 1} \boldsymbol{c}_t \right) + \\ &&
+
+  \boldsymbol{u}^T \left( B_{t}^T \boldsymbol{s}_{t + 1} + \boldsymbol{r}_t +
+    B_{t}^T S_{t + 1} \boldsymbol{c}_t \right) + \\ &&
+
+  \frac{1}{2} \boldsymbol{c}_t^T S_{t + 1} \boldsymbol{c}_t +
+    \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + s_{t + 1} + q_t
+\\
+&=&
+  \frac{1}{2} \left(
+    \boldsymbol{x}^T D_t \boldsymbol{x} +
+    \boldsymbol{u}^T C_t \boldsymbol{x} +
+    \boldsymbol{x}^T C_t^T \boldsymbol{u} +
+    \boldsymbol{u}^T E_t \boldsymbol{u} \right) + \\ &&
+
+  \boldsymbol{x}^T \boldsymbol{d}_t +
+  \boldsymbol{u}^T \boldsymbol{e}_t + \\ &&
+
+  \frac{1}{2} \boldsymbol{c}_t^T S_{t + 1} \boldsymbol{c}_t +
+    \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + s_{t + 1} + q_t
+\\
+&=&
+  \frac{1}{2} \left(
+    \boldsymbol{x}^T D_t \boldsymbol{x} +
+    \left( L_t \boldsymbol{x} + \boldsymbol{l}_t \right)^T C_t \boldsymbol{x} \right. + \\ &&
+    \left. \boldsymbol{x}^T C_t^T \left( L_t \boldsymbol{x} + \boldsymbol{l}_t \right) +
+    \left( L_t \boldsymbol{x} + \boldsymbol{l}_t \right)^T E_t \left( L_t \boldsymbol{x} + \boldsymbol{l}_t \right) \right) + \\ &&
+
+  \boldsymbol{x}^T \boldsymbol{d}_t +
+  \left( L_t \boldsymbol{x} + \boldsymbol{l}_t \right)^T \boldsymbol{e}_t + \\&&
+
+  \frac{1}{2} \boldsymbol{c}_t^T S_{t + 1} \boldsymbol{c}_t +
+    \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + s_{t + 1} + q_t
+\\
+&=&
+  \frac{1}{2} \left(
+    \boldsymbol{x}^T D_t \boldsymbol{x} + \right.
+    \boldsymbol{x}^T L_t^T C_t \boldsymbol{x} + \boldsymbol{l}_t^T C_t \boldsymbol{x} + \\ &&
+
+    \left. \boldsymbol{x}^T C_t^T L_t \boldsymbol{x} + \boldsymbol{x}^T C_t^T \boldsymbol{l}_t +
+
+    \boldsymbol{x}^T L_t^T E_t L_t \boldsymbol{x} +
+    \boldsymbol{l}_t^T E_t L_t \boldsymbol{x} +
+    \boldsymbol{x}^T L_t^T E_t \boldsymbol{l}_t +
+    \boldsymbol{l}_t^T E_t \boldsymbol{l}_t \right) + \\&&
+
+  \boldsymbol{x}^T \boldsymbol{d}_t +
+  \boldsymbol{x}^T L_t^T \boldsymbol{e}_t + \boldsymbol{l}^T_t \boldsymbol{e}_t + \\&&
+
+  \frac{1}{2} \boldsymbol{c}_t^T S_{t + 1} \boldsymbol{c}_t +
+    \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + s_{t + 1} + q_t
+\\
+&=&
+  \frac{1}{2}
+    \boldsymbol{x}^T \left(
+      D_t +
+     L_t^T C_t +
+     C_t^T L_t +
+     L_t^T E_t L_t
+      \right) \boldsymbol{x} + \\ &&
+
+  \boldsymbol{x}^T \left(
+    \frac{1}{2} \left( C_t^T \boldsymbol{l}_t +
+    L_t^T E_t \boldsymbol{l}_t \right) +
+    \boldsymbol{d}_t +
+    L_t^T \boldsymbol{e}_t \right) +
+    \frac{1}{2} \left( \boldsymbol{l}_t^T E_t L_t + \boldsymbol{l}_t^T C_t \right) \boldsymbol{x} + \\ &&
+
+  \frac{1}{2} \boldsymbol{l}_t^T E_t \boldsymbol{l}_t +
+    \boldsymbol{l}^T_t \boldsymbol{e}_t +
+
+  \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + s_{t + 1} + q_t +
+    \frac{1}{2} \boldsymbol{c}_t^T S_{t + 1} \boldsymbol{c}_t
+\\
+&=&
+  \frac{1}{2}
+    \boldsymbol{x}^T \left(
+      D_t +
+     L_t^T C_t +
+     C_t^T L_t +
+     L_t^T E_t L_t
+      \right) \boldsymbol{x} + \\ &&
+
+  \boldsymbol{x}^T \left(
+    C_t^T \boldsymbol{l}_t +
+    L_t^T E_t \boldsymbol{l}_t +
+    \boldsymbol{d}_t +
+    L_t^T \boldsymbol{e}_t \right) + \\ &&
+
+  \frac{1}{2} \boldsymbol{l}_t^T E_t \boldsymbol{l}_t +
+    \boldsymbol{l}^T_t \boldsymbol{e}_t +
+
+  \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + s_{t + 1} + q_t +
+    \frac{1}{2} \boldsymbol{c}_t^T S_{t + 1} \boldsymbol{c}_t
+\end{array}$$
+
+Ok, let's now pull out the 3 variables of interest and do further simplification.
+
+$$\begin{array}{rcl}
+v_{t}(\boldsymbol{x}) &=&
+  \frac{1}{2} \boldsymbol{x}^T S_{t} \boldsymbol{x} + \boldsymbol{x}^T \boldsymbol{s}_{t} + s_{t} \\
+S_t &=&
+     D_t +
+     L_t^T C_t +
+     C_t^T L_t +
+     L_t^T E_t L_t \\
+    &=&
+     D_t -
+     C_t^T E_t^{-1} C_t -
+     C_t^T E_t^{-1} C_t +
+     C_t^T E_t^{-1} C_t \\
+    &=& D_t - C_t^T E_t^{-1} C_t
+\\
+\boldsymbol{s}_t &=&
+    \left( C_t^T + L_t^T E_t \right) \boldsymbol{l}_t +
+    \boldsymbol{d}_t +
+    L_t^T \boldsymbol{e}_t \\
+
+  &=&
+    \left( C_t^T - C_t^T E_t^{-1} E_t \right) \boldsymbol{l}_t +
+    \boldsymbol{d}_t -
+    C_t^T E_t^{-1} \boldsymbol{e}_t \\
+  &=& \boldsymbol{d}_t - C_t^T E_t^{-1} \boldsymbol{e}_t
+\\
+s_t &=&
+  \frac{1}{2} \boldsymbol{l}_t^T E_t \boldsymbol{l}_t +
+    \boldsymbol{l}^T_t \boldsymbol{e}_t +
+
+  \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + s_{t + 1} + q_t +
+  \frac{1}{2} \boldsymbol{c}_t^T S_{t + 1} \boldsymbol{c}_t
+\\
+&=&
+\frac{1}{2} \boldsymbol{e}_t^T E_t^{-1} E_t E_t^{-1} \boldsymbol{e}_t -
+  \boldsymbol{e}_t^T E_t^{-1} \boldsymbol{e}_t +
+
+  \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + s_{t + 1} + q_t +
+
+  \frac{1}{2} \boldsymbol{c}_t^T S_{t + 1} \boldsymbol{c}_t
+\\
+&=&
+q_t - \frac{1}{2} \boldsymbol{e}_t^T E_t^{-1} \boldsymbol{e}_t +
+
+  \frac{1}{2} \boldsymbol{c}_t^T S_{t + 1} \boldsymbol{c}_t +
+  \boldsymbol{c}_t^T \boldsymbol{s}_{t + 1} + s_{t + 1}
+\end{array}$$
+
+For better or worse, everything but the constant term matches both the 2013
+paper (which has no constant term) and the 2014 paper.
+The constant term does not match the 2014 paper, but we're pretty sure it's
+correct (extended\_lqr\_derivation.py verifies what we have).
+The 2014 paper has this for the constant term instead:
+$$\begin{array}{rcl}
+s_t &=&
+  q_t - \frac{1}{2} \boldsymbol{e}_t^T E_t^{-1} \boldsymbol{e}_t
+\end{array}$$
+
+\section{Forwards Pass}
+
+Let's define the forwards pass to build the cost-to-come function.
+We must use the same cycle cost, $c_t(\boldsymbol{x}, \boldsymbol{u})$, as the backwards pass.
+The initial cost $v_0(\boldsymbol{x})$ needs to evaluate to $0$ at $\boldsymbol{x}_0$ since
+there is no cost needed to get from $\boldsymbol{x}_0$ to $\boldsymbol{x}_0$.
+
+$$\begin{array}{rcl}
+\bar v_{t}(\boldsymbol{x}) &=&
+  \frac{1}{2} \boldsymbol{x}^T \bar S_{t} \boldsymbol{x} + \boldsymbol{x}^T \boldsymbol{\bar s}_{t} + \bar s_{t} \\
+
+\bar g_t(\boldsymbol{x}_{t + 1}, \boldsymbol{u}) = \boldsymbol{x}_{t}(\boldsymbol{u}) &=&
+  \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t} \\
+
+\bar c_{t + 1}(\boldsymbol{x}_{t+1}, \boldsymbol{u}) &=& c_t(\bar g_{t}(\boldsymbol{x}_{t + 1}, \boldsymbol{u}), \boldsymbol{u}) \\
+
+\bar v_{t + 1}(\boldsymbol{x}_{t+1}, \boldsymbol{u}) &=&
+  \bar v_{t}(\boldsymbol{x}_{t}) +
+  \bar c_t(\boldsymbol{x}_{t + 1}, \boldsymbol{u}_t)
+  \\
+&=&
+  \bar v_{t}(\bar g_t(\boldsymbol{x}_{t + 1}, \boldsymbol{u})) +
+ c_t(\bar g_{t}(\boldsymbol{x}_{t + 1}, \boldsymbol{u}), \boldsymbol{u}) \\
+  \\
+\end{array}$$
+
+It is important to note that the optimal $\boldsymbol{u}$ used to get from $\boldsymbol{x}_t$ to $\boldsymbol{x}_{t+1}$
+when evaluating $g_t(\boldsymbol{x}, \boldsymbol{u})$ is the same optimal $\boldsymbol{u}$
+used to get from $\boldsymbol{x}_{t+1}$ to $\boldsymbol{x}_t$ when evaluating $\bar g_{t}(\boldsymbol{x}_{t + 1}, \boldsymbol{u})$.
+Conveniently, this means that the $\boldsymbol{u}_t$, $L_t$, and $\boldsymbol{l}_t$ calculated in both the forwards and backwards passes is the same.
+
+Like before, we want to get a quadratic solution of the form
+$$\bar v_{t + 1}(\boldsymbol{x}_{t+1}) =
+  \frac{1}{2} \boldsymbol{x}_{t+1}^T \bar S_{t + 1} \boldsymbol{x}_{t+1} + \boldsymbol{x}_{t+1}^T \boldsymbol{\bar s}_{t + 1} + \bar s_{t + 1}$$ for each step.
+
+$$\begin{array}{rcl}
+\bar v_{t + 1}(\boldsymbol{x}_{t+1}, \boldsymbol{u}) &=&
+    \frac{1}{2} \left(\bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right)^T
+        \bar S_{t}
+        \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right) + \\ &&
+    \left(\bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right) ^T \boldsymbol{\bar s}_{t} + \bar s_{t} +  \\&&
+  \frac{1}{2}
+    \begin{bmatrix} \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right) \\ \boldsymbol{u} \end{bmatrix}^T
+    \begin{bmatrix} Q_t & P_t^T \\ P_t & R_t \end{bmatrix}
+    \begin{bmatrix} \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right) \\ \boldsymbol{u} \end{bmatrix} + \\&&
+  \begin{bmatrix} \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right) \\ \boldsymbol{u} \end{bmatrix}^T
+    \begin{bmatrix} \boldsymbol{q}_t \\ \boldsymbol{r}_t \end{bmatrix} +
+  q_t \\
+
+  &=&
+    \frac{1}{2} \left(\bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right)^T
+        \bar S_{t}
+        \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right) + \\ &&
+    \left(\bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right) ^T \boldsymbol{\bar s}_{t} + \bar s_{t} +  \\&&
+
+      \frac{1}{2} \left(
+        \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right)^T Q_t \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right) + \right. \\&&
+        \boldsymbol{u}^T P_t \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right) + \\&&
+        \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right)^T P_t^T \boldsymbol{u} + \\&&
+        \left. \boldsymbol{u}^T R_t \boldsymbol{u} \right) + \\&&
+
+        \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right)^T \boldsymbol{q}_t + \boldsymbol{u}^T \boldsymbol{r}_t + q_t \\
+
+  &=&
+    \frac{1}{2} \left(\bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right)^T
+      \left( \bar S_{t} + Q_t \right)
+        \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right) + \\ &&
+    \left(\bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right) ^T \boldsymbol{\bar s}_{t} + \bar s_{t} +  \\&&
+
+      \frac{1}{2} \left(
+        \boldsymbol{u}^T P_t \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right) \right. + \\&&
+        \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right)^T P_t^T \boldsymbol{u} + \\&&
+        \left. \boldsymbol{u}^T R_t \boldsymbol{u} \right) + \\&&
+
+        \left( \bar A_{t} \boldsymbol{x}_{t + 1} + \bar B_t \boldsymbol{u} + \boldsymbol{\bar c}_{t}\right)^T \boldsymbol{q}_t + \boldsymbol{u}^T \boldsymbol{r}_t + q_t \\
+
+  &=& \frac{1}{2} \left(
+      \boldsymbol{x}_{t + 1}^T \bar A_t^T \left( \bar S_t + Q_t \right) \bar A_t \boldsymbol{x}_{t + 1} +
+      \boldsymbol{x}_{t + 1}^T \bar A_t^T \left( \bar S_t + Q_t \right) \bar B_t \boldsymbol{u} +
+      \boldsymbol{x}_{t + 1}^T \bar A_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t + \right. \\&&
+      \boldsymbol{u}^T \bar B_t^T \left( \bar S_t + Q_t \right) \bar A_t \boldsymbol{x}_{t + 1} +
+      \boldsymbol{u}^T \bar B_t^T \left( \bar S_t + Q_t \right) \bar B_t \boldsymbol{u} +
+      \boldsymbol{u}^T \bar B_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t + \\&&
+      \left. \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \bar A_t \boldsymbol{x}_{t + 1} +
+      \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \bar B_t \boldsymbol{u} +
+      \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t \right) + \\&&
+
+      \boldsymbol{x}_{t + 1}^T \bar A_t^T \boldsymbol{\bar s}_t +
+      \boldsymbol{u}^T \bar B_t^T \boldsymbol{\bar s}_t +
+      \boldsymbol{\bar c}_t^T \boldsymbol{\bar s}_t +
+
+      \bar s_t + \\ &&
+
+      \frac{1}{2} \left( \boldsymbol{u}^T P_t \bar A_{t} \boldsymbol{x}_{t + 1} +
+      \boldsymbol{u}^T P_t \bar B_{t} \boldsymbol{u} +
+      \boldsymbol{u}^T P_t \boldsymbol{\bar c}_{t} \right) + \\&&
+      \frac{1}{2} \left( \boldsymbol{x}_{t+1}^T \bar A^T_t P_t^T \boldsymbol{u} +
+      \boldsymbol{u}^T \bar B^T_{t} P_t^T \boldsymbol{u} +
+      \boldsymbol{\bar c}_t^T P^T_t \boldsymbol{u} \right) + \\&&
+
+      \frac{1}{2} \boldsymbol{u}^T R_t \boldsymbol{u} + \\&&
+
+        \boldsymbol{x}^T_{t + 1} \bar A^T_t \boldsymbol{q}_t +
+        \boldsymbol{u}^T \bar B^T_t \boldsymbol{q}_t +
+      \boldsymbol{\bar c}_t^T  \boldsymbol{q}_t +
+
+        \boldsymbol{u}^T \boldsymbol{r}_t + q_t
+\end{array}$$
+
+Now, let's find the optimal $\boldsymbol{u}$.
+Do this by evaluating
+$\frac{\partial}{\partial \boldsymbol{u}} \bar v_t(\boldsymbol{x}, \boldsymbol{u}) = 0$.
+
+$$\begin{array}{rcl}
+\frac{\partial}{\partial \boldsymbol{u}} \bar v_{t + 1}(\boldsymbol{x}_{t+1}, \boldsymbol{u})
+  &=& \frac{1}{2} \left(
+      \boldsymbol{x}_{t + 1}^T \bar A_t^T \left( \bar S_t + Q_t \right) \bar B_t +
+
+      \left(\bar B_t^T \left( \bar S_t + Q_t \right) \bar A_t \boldsymbol{x}_{t + 1}\right)^T + \right. \\&&
+
+      2 \boldsymbol{u}^T \bar B_t^T \left( \bar S_t + Q_t \right) \bar B_t +
+      \left( \bar B_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t \right)^T + \\&&
+      \left. \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \bar B_t \right) + \\&& 
+      \boldsymbol{\bar s}_t ^T \bar B_t + \\&&
+
+      \frac{1}{2} \left( P_t \bar A_{t} \boldsymbol{x}_{t + 1}\right) ^T +
+      \frac{1}{2} \boldsymbol{x}_{t+1}^T \bar A^T_t P_t^T + \\&&
+
+      \frac{1}{2} \boldsymbol{u}^T \left( P_t \bar B_{t} + \bar B_t^T P_t^T \right) +
+      \frac{1}{2} \boldsymbol{u}^T \left( \bar B^T_{t} P_t^T + P_t \bar B_t \right) + \\&&
+      \frac{1}{2} \left( P_t \boldsymbol{\bar c}_{t} \right)^T +
+      \frac{1}{2} \boldsymbol{\bar c}^T_{t} P_t^T +
+
+      \boldsymbol{u}^T R_t + \\&&
+
+        \left(\bar B^T_t \boldsymbol{q}_t\right)^T +
+
+        \boldsymbol{r}_t^T \\
+
+  &=&
+      \boldsymbol{x}_{t + 1}^T \bar A_t^T \left( \bar S_t + Q_t \right) \bar B_t +
+      \boldsymbol{u}^T \bar B_t^T \left( \bar S_t + Q_t \right) \bar B_t +
+
+      \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \bar B_t + \\&& 
+
+      \boldsymbol{\bar s}_t ^T \bar B_t + \\&&
+
+      \boldsymbol{x}_{t+1}^T \bar A^T_t P_t^T + \\&&
+
+      \boldsymbol{u}^T \left( \bar B^T_{t} P_t^T + P_t \bar B_t \right) + \\&&
+      \boldsymbol{\bar c}^T_{t} P_t^T +
+
+      \boldsymbol{u}^T R_t + \\&&
+
+      \boldsymbol{q}_t^T \bar B_t +
+      \boldsymbol{r}_t^T \\
+0 &=&
+      \boldsymbol{x}_{t + 1}^T \left( \bar A_t^T \left( \bar S_t + Q_t \right) \bar B_t + \bar A^T_t P_t^T \right) + \\&&
+
+      \boldsymbol{u}^T \left(
+          \bar B_t^T \left( \bar S_t + Q_t \right) \bar B_t +
+          \bar B^T_{t} P_t^T + P_t \bar B_t + R_t
+      \right) + \\&&
+
+      \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \bar B_t +
+      \boldsymbol{\bar s}_t^T \bar B_t +
+      \boldsymbol{\bar c}^T_{t} P_t^T +
+      \boldsymbol{q}_t^T \bar B_t +
+      \boldsymbol{r}_t^T \\
+\end{array}$$
+
+$$\begin{array}{rcl}
+      \boldsymbol{u}^T \left(
+          \bar B_t^T \left( \bar S_t + Q_t \right) \bar B_t +
+          \bar B^T_{t} P_t^T + P_t \bar B_t + R_t
+      \right)
+ &=&
+      - \boldsymbol{x}_{t + 1}^T \left( \bar A_t^T \left( \bar S_t + Q_t \right) \bar B_t + \bar A^T_t P_t^T \right) - \\&&
+
+
+      \left( \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \bar B_t +
+      \boldsymbol{\bar s}_t^T \bar B_t +
+      \boldsymbol{\bar c}^T_{t} P_t^T +
+      \boldsymbol{q}_t^T \bar B_t +
+      \boldsymbol{r}_t^T \right) \\
+
+\left(
+    \bar B_t^T \left( \bar S_t + Q_t \right) \bar B_t +
+    \bar B^T_{t} P_t^T + P_t \bar B_t + R_t
+\right) \boldsymbol{u}
+   &=&
+      - \left( \bar B_t^T \left( \bar S_t + Q_t \right) \bar A_t + P_t \bar A_t \right) \boldsymbol{x}_{t + 1} - \\&&
+
+      \left( \bar B_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t  +
+      \bar B_t^T \boldsymbol{\bar s}_t +
+      P_t \boldsymbol{\bar c}_{t} +
+      \bar B_t^T \boldsymbol{q}_t +
+      \boldsymbol{r}_t \right) \\
+\end{array}$$
+
+Some substitutions to use for simplifying:
+
+$$\begin{array}{rcl}
+\bar C_t &=& \bar B_t^T \left( \bar S_t + Q_t \right) \bar A_t + P_t \bar A_t \\
+\bar E_t &=&
+    \bar B_t^T \left( \bar S_t + Q_t \right) \bar B_t +
+    \bar B^T_{t} P_t^T + P_t \bar B_t + R_t \\
+\bar L_t &=& - \bar E_t^{-1} \bar C_t \\
+
+\boldsymbol{\bar e}_t &=&
+      \bar B_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t  +
+      \bar B_t^T \boldsymbol{\bar s}_t +
+      P_t \boldsymbol{\bar c}_{t} +
+      \bar B_t^T \boldsymbol{q}_t +
+      \boldsymbol{r}_t \\
+\boldsymbol{\bar l}_t &=& - \bar E_t^{-1} \boldsymbol{\bar e}_t \\
+
+\bar D_t &=& \bar A_t^T \left( \bar S_t + Q_t \right) \bar A_t \\
+\boldsymbol{\bar d}_t &=&
+      \bar A_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t +
+      \bar A_t^T \left( \boldsymbol{\bar s}_t + \boldsymbol{q}_t \right) \\
+
+\boldsymbol{u} &=& - \bar E_t^{-1} \bar C_t \boldsymbol{x}_{t + 1} - \bar E_t^{-1} \boldsymbol{\bar e}_t \\
+\boldsymbol{u} &=& \bar L_t \boldsymbol{x}_{t + 1} + \boldsymbol{\bar l}_t \\
+
+\bar E_t \boldsymbol{u} &=& -\bar C_t \boldsymbol{x}_{t + 1} - \boldsymbol{\bar e}_t
+\end{array}$$
+
+Now, let's solve for the new cost function.
+
+$$\begin{array}{rcl}
+\bar v_{t + 1}(\boldsymbol{x}_{t+1}, \boldsymbol{u})
+  &=& \frac{1}{2} \left(
+      \boldsymbol{x}_{t + 1}^T \bar A_t^T \left( \bar S_t + Q_t \right) \bar A_t \boldsymbol{x}_{t + 1} +
+      \boldsymbol{x}_{t + 1}^T \bar A_t^T \left( \bar S_t + Q_t \right) \bar B_t \boldsymbol{u} +
+      \boldsymbol{x}_{t + 1}^T \bar A_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t + \right. \\&&
+      \boldsymbol{u}^T \bar B_t^T \left( \bar S_t + Q_t \right) \bar A_t \boldsymbol{x}_{t + 1} +
+      \boldsymbol{u}^T \bar B_t^T \left( \bar S_t + Q_t \right) \bar B_t \boldsymbol{u} +
+      \boldsymbol{u}^T \bar B_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t + \\&&
+      \left. \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \bar A_t \boldsymbol{x}_{t + 1} +
+      \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \bar B_t \boldsymbol{u} +
+      \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t \right) + \\&& 
+
+      \boldsymbol{x}_{t + 1}^T \bar A_t^T \boldsymbol{\bar s}_t +
+      \boldsymbol{u}^T \bar B_t^T \boldsymbol{\bar s}_t +
+      \boldsymbol{\bar c}_t^T \boldsymbol{\bar s}_t +
+
+      \bar s_t + \\ &&
+
+      \frac{1}{2} \left( \boldsymbol{u}^T P_t \bar A_{t} \boldsymbol{x}_{t + 1} +
+      \boldsymbol{u}^T P_t \bar B_{t} \boldsymbol{u} +
+      \boldsymbol{u}^T P_t \boldsymbol{\bar c}_{t} \right) + \\&&
+      \frac{1}{2} \left( \boldsymbol{x}_{t+1}^T \bar A^T_t P_t^T \boldsymbol{u} +
+      \boldsymbol{u}^T \bar B^T_{t} P_t^T \boldsymbol{u} +
+      \boldsymbol{\bar c}_t^T P^T_t \boldsymbol{u} \right) + \\&&
+
+      \frac{1}{2} \boldsymbol{u}^T R_t \boldsymbol{u} + \\&&
+
+        \boldsymbol{x}^T_{t + 1} \bar A^T_t \boldsymbol{q}_t +
+        \boldsymbol{u}^T \bar B^T_t \boldsymbol{q}_t +
+      \boldsymbol{\bar c}_t^T \boldsymbol{q}_t +
+
+        \boldsymbol{u}^T \boldsymbol{r}_t + q_t \\
+
+\bar v_{t + 1}(\boldsymbol{x}_{t+1}, \boldsymbol{u})
+  &=& \frac{1}{2} \left(
+      \boldsymbol{x}_{t + 1}^T \bar D_t \boldsymbol{x}_{t + 1} +
+      \boldsymbol{x}_{t + 1}^T \bar C_t^T \boldsymbol{u} +
+      \boldsymbol{u}^T \bar C_t \boldsymbol{x}_{t + 1} +
+      \boldsymbol{u}^T \bar E_t \boldsymbol{u} \right) + \\&&
+
+      \boldsymbol{x}_{t + 1}^T \boldsymbol{\bar d}_t +
+
+      \boldsymbol{u}^T \boldsymbol{\bar e}_t + \\&&
+
+      \frac{1}{2} \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t +
+      \boldsymbol{\bar c}_t^T \boldsymbol{\bar s}_t + \boldsymbol{\bar c}_t^T \boldsymbol{q}_t + \bar s_t + q_t \\
+
+\bar v_{t + 1}(\boldsymbol{x}_{t+1})
+  &=& \frac{1}{2} \left(
+      \boldsymbol{x}_{t + 1}^T \bar D_t \boldsymbol{x}_{t + 1} + \right. \\ &&
+      \boldsymbol{x}_{t + 1}^T \bar C_t^T \left( -\bar E_t^{-1} \bar C_t \boldsymbol{x}_{t + 1} - \bar E_t^{-1} \boldsymbol{\bar e}_t \right) + \\&&
+      \left( -\bar E_t^{-1} \bar C_t \boldsymbol{x}_{t + 1} - \bar E_t^{-1} \boldsymbol{\bar e}_t \right)^T \bar C_t \boldsymbol{x}_{t + 1} + \\&&
+      \left. \left( -\bar E_t^{-1} \bar C_t \boldsymbol{x}_{t + 1} - \bar E_t^{-1} \boldsymbol{\bar e}_t \right)^T \bar E_t \left( -\bar E_t^{-1} \bar C_t \boldsymbol{x}_{t + 1} - \bar E_t^{-1} \boldsymbol{\bar e}_t \right) \right) + \\&&
+
+      \boldsymbol{x}_{t + 1}^T \boldsymbol{\bar d}_t +
+
+      \left( -\bar E_t^{-1} \bar C_t \boldsymbol{x}_{t + 1} - \bar E_t^{-1} \boldsymbol{\bar e}_t \right)^T \boldsymbol{\bar e}_t + \\&&
+
+      \frac{1}{2} \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t +
+      \boldsymbol{\bar c}_t^T \boldsymbol{\bar s}_t + \boldsymbol{\bar c}_t^T \boldsymbol{q}_t + \bar s_t + q_t \\
+
+\bar v_{t + 1}(\boldsymbol{x}_{t+1})
+  &=& \frac{1}{2}
+      \boldsymbol{x}_{t + 1}^T \left(\bar D_t - \bar C_t^T \bar E_t^{-1} \bar C_t \right) \boldsymbol{x}_{t + 1} + \\ &&
+
+      \boldsymbol{x}_{t + 1}^T \left(\boldsymbol{\bar d}_t
+      - \bar C_t^T \bar E_t^{-1} \boldsymbol{\bar e}_t \right)\\&&
+
+      - \frac{1}{2} \boldsymbol{\bar e}_t^T \bar E_t^{-1} \boldsymbol{\bar e}_t +
+      \frac{1}{2} \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t +
+      \boldsymbol{\bar c}_t^T \boldsymbol{\bar s}_t + \boldsymbol{\bar c}_t^T \boldsymbol{q}_t + \bar s_t + q_t \\
+\end{array}$$
+
+Ok, let's now pull out the 3 variables of interest and do further simplification.
+
+$$\begin{array}{rcl}
+\bar v_{t + 1}(\boldsymbol{x}_{t+1}) &=& \frac{1}{2} \boldsymbol{x}_{t + 1}^T \bar S_{t + 1} \boldsymbol{x}_{t + 1} + \boldsymbol{x}_{t + 1}^T \boldsymbol{\bar s}_{t + 1} + \bar s_{t+1} \\
+  \bar S_{t + 1} &=& \bar D_t - \bar C_t^T \bar E_t^{-1} \bar C_t \\
+  \boldsymbol{\bar s}_{t + 1} &=&
+       \left(\boldsymbol{\bar d}_t - \bar C_t^T \bar E_t^{-1} \boldsymbol{\bar e}_t \right)\\
+
+\bar s_{t+1} &=&
+      - \frac{1}{2} \boldsymbol{\bar e}_t^T \bar E_t^{-1} \boldsymbol{\bar e}_t +
+      \frac{1}{2} \boldsymbol{\bar c}_t^T \left( \bar S_t + Q_t \right) \boldsymbol{\bar c}_t +
+      \boldsymbol{\bar c}_t^T \boldsymbol{\bar s}_t + \boldsymbol{\bar c}_t^T \boldsymbol{q}_t + \bar s_t + q_t \\
+\end{array}$$
+
+\newpage
+\section{Detailed work for a few transformations}
+
+$$\begin{array}{l}
+\begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{u} \end{bmatrix}^T
+\begin{bmatrix} Q_{t} & P_{t}^T \\ P_{t} & R_{t} \end{bmatrix}
+\begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{u} \end{bmatrix} \\
+
+\begin{bmatrix} \boldsymbol{x}_1 & \boldsymbol{x}_2 & \boldsymbol{u}_1 & \boldsymbol{u}_2 \end{bmatrix}
+\left[\begin{array}{cc|cc}
+    Q_{t11} & Q_{t12} & P_{t11} & P_{t21} \\
+    Q_{t21} & Q_{t22} & P_{t12} & P_{t22} \\
+    \hline
+    P_{t11} & P_{t12} & R_{t11} & R_{t12} \\
+    P_{t21} & P_{t22} & R_{t21} & R_{t22} \\
+\end{array}\right]
+\begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix}
+\\
+\begin{bmatrix}
+  \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \cdot
+    \begin{bmatrix} Q_{t11} \\ Q_{t21} \\ P_{t11} \\ P_{t21} \end{bmatrix} &
+  \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \cdot
+    \begin{bmatrix} Q_{t12} \\ Q_{t22} \\ P_{t12} \\ P_{t22} \end{bmatrix} &
+  \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \cdot
+    \begin{bmatrix} P_{t11} \\ P_{t12} \\ R_{t11} \\ R_{t21} \end{bmatrix} &
+  \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \cdot
+    \begin{bmatrix} P_{t21} \\ P_{t22} \\ R_{t12} \\ R_{t22} \end{bmatrix} &
+\end{bmatrix}
+\begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix}
+\\
+\begin{bmatrix}
+  \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} \cdot
+    \begin{bmatrix} Q_{t11} \\ Q_{t21} \end{bmatrix}
+  \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} \cdot
+    \begin{bmatrix} Q_{t12} \\ Q_{t22} \end{bmatrix}
+  \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} \cdot
+    \begin{bmatrix} P_{t11} \\ P_{t12} \end{bmatrix}
+  \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} \cdot
+    \begin{bmatrix} P_{t21} \\ P_{t22} \end{bmatrix}
+\end{bmatrix}
+\begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} + \\ \quad
+\begin{bmatrix}
+    \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \cdot
+      \begin{bmatrix} P_{t11} \\ P_{t21} \end{bmatrix} &
+    \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \cdot
+      \begin{bmatrix} P_{t12} \\ P_{t22} \end{bmatrix} &
+    \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \cdot
+      \begin{bmatrix} R_{t11} \\ R_{t21} \end{bmatrix} &
+    \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \cdot
+      \begin{bmatrix} R_{t12} \\ R_{t22} \end{bmatrix} &
+\end{bmatrix}
+\begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix}
+\\
+\begin{bmatrix} \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} \cdot
+  \begin{bmatrix} Q_{t11} \\ Q_{t21} \end{bmatrix} &
+  \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} \cdot
+  \begin{bmatrix} Q_{t12} \\ Q_{t22} \end{bmatrix}\end{bmatrix}
+  \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} +
+\begin{bmatrix} \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} \cdot
+  \begin{bmatrix} P_{t11} \\ P_{t12} \end{bmatrix} &
+  \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} \cdot
+  \begin{bmatrix} P_{t21} \\ P_{t22} \end{bmatrix}\end{bmatrix}
+  \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} + \\ \quad
+\begin{bmatrix} \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \cdot
+  \begin{bmatrix} P_{t11} \\ P_{t21} \end{bmatrix} &
+  \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \cdot
+  \begin{bmatrix} P_{t12} \\ P_{t22} \end{bmatrix}\end{bmatrix}
+  \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} +
+\begin{bmatrix} \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \cdot
+  \begin{bmatrix} R_{t11} \\ R_{t21} \end{bmatrix} &
+  \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \cdot
+  \begin{bmatrix} R_{t12} \\ R_{t22} \end{bmatrix}\end{bmatrix}
+  \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix}
+\\
+\boldsymbol{x}^T Q_t \boldsymbol{x} + \boldsymbol{u}^T P_t \boldsymbol{x} + \boldsymbol{x}^T P_t^T \boldsymbol{u} + \boldsymbol{u}^T R_t \boldsymbol{u}
+\end{array}$$
+\\ \\
+$$\begin{array}{l}
+\begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{u} \end{bmatrix}^T
+\begin{bmatrix} \boldsymbol{q}_{t} \\ \boldsymbol{r}_{t} \end{bmatrix}
+\\
+\begin{bmatrix} \boldsymbol{x}_1 & \boldsymbol{x}_2 & \boldsymbol{u}_1 & \boldsymbol{u}_2 \end{bmatrix}
+\begin{bmatrix} \boldsymbol{q}_{t1} \\ \boldsymbol{q}_{t2} \\ \boldsymbol{r}_{t1} \\ \boldsymbol{r}_{t1} \end{bmatrix}
+\\
+\boldsymbol{x}^T \boldsymbol{q}_t + \boldsymbol{u}^T \boldsymbol{r}_t
+\end{array}$$
+
+\end{document}
diff --git a/y2014/control_loops/python/extended_lqr_derivation.py b/y2014/control_loops/python/extended_lqr_derivation.py
new file mode 100755
index 0000000..248c6fc
--- /dev/null
+++ b/y2014/control_loops/python/extended_lqr_derivation.py
@@ -0,0 +1,410 @@
+#!/usr/bin/python2
+
+# This file checks our math in extended_lqr.tex.
+
+from __future__ import print_function
+from __future__ import division
+
+import sys
+import random
+
+import sympy
+
+'''
+* `x_t1` means `x_{t + 1}`. Using `'x_t + 1'` as the symbol name makes the non-
+  latex output really confusing, so not doing that.
+* `xb` means `\\boldsymbol{x}`. Written as `'xbold'` in the symbol name because
+  that's what sympy.latex recognizes.
+* `xb_tb` means `\\boldsymbol{\\bar x}_t. Written as `'xboldbar'` in the symbol
+  name so sympy.latex recognizes it.
+'''
+
+# sympy.latex
+
+# n in the 2013 paper
+number_of_states = sympy.Symbol('states', integer=True)
+# m in the 2013 paper
+number_of_inputs = sympy.Symbol('inputs', integer=True)
+number_of_outputs = sympy.Symbol('outputs', integer=True)
+
+DIMENSIONS = set([number_of_states, number_of_inputs, number_of_outputs])
+
+A_t = sympy.MatrixSymbol('A_t', number_of_states, number_of_states)
+B_t = sympy.MatrixSymbol('B_t', number_of_states, number_of_inputs)
+cb_t = sympy.MatrixSymbol('cbold_t', number_of_states, 1)
+A_tb = sympy.MatrixSymbol('Abar_t', number_of_states, number_of_states)
+B_tb = sympy.MatrixSymbol('Bbar_t', number_of_states, number_of_inputs)
+cb_tb = sympy.MatrixSymbol('cboldbar_t', number_of_states, 1)
+
+Q_t = sympy.MatrixSymbol('Q_t', number_of_states, number_of_states)
+P_t = sympy.MatrixSymbol('P_t', number_of_inputs, number_of_states)
+R_t = sympy.MatrixSymbol('R_t', number_of_inputs, number_of_inputs)
+qb_t = sympy.MatrixSymbol('qbold_t', number_of_states, 1)
+rb_t = sympy.MatrixSymbol('rbold_t', number_of_inputs, 1)
+q_t = sympy.MatrixSymbol('q_t', 1, 1)
+
+S_t1 = sympy.MatrixSymbol('S_t1', number_of_states, number_of_states)
+sb_t1 = sympy.MatrixSymbol('sbold_t1', number_of_states, 1)
+s_t1 = sympy.MatrixSymbol('s_t1', 1, 1)
+S_tb = sympy.MatrixSymbol('Sbar_t', number_of_states, number_of_states)
+sb_tb = sympy.MatrixSymbol('sboldbar_t', number_of_states, 1)
+s_tb = sympy.MatrixSymbol('sbar_t', 1, 1)
+
+xb_t = sympy.MatrixSymbol('xbold_t', number_of_states, 1)
+ub_t = sympy.MatrixSymbol('ubold_t', number_of_inputs, 1)
+xb_t1 = sympy.MatrixSymbol('xbold_t1', number_of_states, 1)
+ub_t1 = sympy.MatrixSymbol('ubold_t1', number_of_inputs, 1)
+
+half = sympy.Integer(1) / sympy.Integer(2)
+xb = sympy.MatrixSymbol('xbold', number_of_states, 1)
+ub = sympy.MatrixSymbol('ubold', number_of_inputs, 1)
+
+CONSTANTS = set([
+    A_t, B_t, cb_t,
+    S_t1, sb_t1, s_t1,
+    A_tb, B_tb, cb_tb,
+    S_tb, sb_tb, s_tb,
+    P_t, Q_t, R_t, qb_t, rb_t, q_t,
+    ])
+
+SYMMETRIC_CONSTANTS = set([
+    S_t1, S_tb,
+    Q_t, R_t,
+    ])
+
+def verify_equivalent(a, b, inverses={}):
+  def get_matrices(m):
+    matrices = m.atoms(sympy.MatrixSymbol)
+    new_matrices = set()
+    for matrix in matrices:
+      if matrix in inverses:
+        new_matrices.update(inverses[matrix].atoms(sympy.MatrixSymbol))
+    matrices.update(new_matrices)
+  a_matrices, b_matrices = get_matrices(a), get_matrices(b)
+  if a_matrices != b_matrices:
+    raise RuntimeError('matrices different: %s vs %s' % (a_matrices,
+                                                         b_matrices))
+  a_symbols, b_symbols = a.atoms(sympy.Symbol), b.atoms(sympy.Symbol)
+  if a_symbols != b_symbols:
+    raise RuntimeError('symbols different: %s vs %s' % (a_symbols, b_symbols))
+  if not a_symbols < DIMENSIONS:
+    raise RuntimeError('not sure what to do with %s' % (a_symbols - DIMENSIONS))
+
+  if a.shape != b.shape:
+    raise RuntimeError('Different shapes: %s and %s' % (a.shape, b.shape))
+
+  for _ in range(10):
+    subs_symbols = {s: random.randint(1, 5) for s in a_symbols}
+    for _ in range(10):
+      diff = a - b
+      subs_matrices = {}
+      def get_replacement(*args):
+        try:
+          m = sympy.MatrixSymbol(*args)
+          if m not in subs_matrices:
+            if m in inverses:
+              i = inverses[m].replace(sympy.MatrixSymbol, get_replacement, simultaneous=False)
+              i_evaled = sympy.ImmutableMatrix(i.rows, i.cols,
+                                               lambda x,y: i[x, y].evalf())
+              subs_matrices[m] = i_evaled.I
+            else:
+              rows = m.rows.subs(subs_symbols)
+              cols = m.cols.subs(subs_symbols)
+              new_m = sympy.ImmutableMatrix(rows, cols,
+                                            lambda i,j: random.uniform(-5, 5))
+              if m in SYMMETRIC_CONSTANTS:
+                if rows != cols:
+                  raise RuntimeError('Non-square symmetric matrix %s' % m)
+                def calculate_cell(i, j):
+                  if i > j:
+                    return new_m[i, j]
+                  else:
+                    return new_m[j, i]
+                new_m = sympy.ImmutableMatrix(rows, cols, calculate_cell)
+              subs_matrices[m] = new_m
+          return subs_matrices[m]
+        except AttributeError as e:
+          # Stupid sympy silently eats AttributeErrors and treats them as
+          # "no replacement"...
+          raise RuntimeError(e)
+      # subs fails when it tries doing matrix multiplies between fixed-size ones
+      # and the rest of the equation which still has the symbolic-sized ones.
+      # subs(simultaneous=True) wants to put dummies in for everything first,
+      # and Dummy().transpose() is broken.
+      # replace() has the same issue as subs with simultaneous being True.
+      # lambdify() has no idea what to do with the transposes if you replace all
+      # the matrices with ones of random sizes full of dummies.
+      diff = diff.replace(sympy.MatrixSymbol, get_replacement,
+                          simultaneous=False)
+      for row in range(diff.rows):
+        for col in range(diff.cols):
+          result = diff[row, col].evalf()
+          if abs(result) > 1e-7:
+            raise RuntimeError('difference at (%s, %s) is %s' % (row, col,
+                                                                 result))
+
+def verify_arguments(f, *args):
+  matrix_atoms = f.atoms(sympy.MatrixSymbol) - CONSTANTS
+  if matrix_atoms != set(args):
+    print('Arguments expected to be %s, but are %s, in:\n%s' % (
+        sorted(args), sorted(list(matrix_atoms)), f), file=sys.stderr)
+    raise RuntimeError
+
+def make_c_t():
+  x_and_u = sympy.BlockMatrix(((xb,), (ub,)))
+  c_t = (half * x_and_u.transpose() *
+         sympy.BlockMatrix(((Q_t, P_t.T), (P_t, R_t))) * x_and_u +
+         x_and_u.transpose() * sympy.BlockMatrix(((qb_t,), (rb_t,))) +
+         q_t)
+  verify_arguments(c_t, xb, ub)
+  return c_t
+
+def check_backwards_cost():
+  g_t = A_t * xb_t + B_t * ub_t + cb_t
+  verify_arguments(g_t, xb_t, ub_t)
+  v_t1 = half * xb.transpose() * S_t1 * xb + xb.transpose() * sb_t1 + s_t1
+  verify_arguments(v_t1, xb)
+  v_t = (v_t1.subs(xb, g_t) + make_c_t()).subs({xb_t: xb, ub_t: ub})
+  verify_arguments(v_t, xb, ub)
+
+  v_t_for_cost = (
+      half * (
+          xb.transpose() * (A_t.transpose() * S_t1 * A_t + Q_t) * xb +
+          ub.transpose() * (B_t.transpose() * S_t1 * A_t + P_t) * xb +
+          xb.transpose() * (A_t.transpose() * S_t1 * B_t + P_t.T) * ub +
+          ub.transpose() * (B_t.transpose() * S_t1 * B_t + R_t) * ub) +
+      xb.transpose() * (A_t.transpose() * sb_t1 + qb_t) +
+      ub.transpose() * (B_t.transpose() * sb_t1 + rb_t) +
+      cb_t.transpose() * sb_t1 +
+      s_t1 + q_t +
+      half * (cb_t.transpose() * S_t1 * cb_t +
+    xb.transpose() * A_t.transpose() * S_t1 * cb_t +
+    ub.transpose() * B_t.transpose() * S_t1 * cb_t +
+    cb_t.transpose() * S_t1 * B_t * ub +
+              cb_t.transpose() * S_t1 * A_t * xb))
+  verify_equivalent(v_t, v_t_for_cost)
+
+  v_t_now = (
+      half * (xb.T * (A_t.T * S_t1 * A_t + Q_t) * xb +
+              ub.T * (B_t.T * S_t1 * A_t + P_t) * xb +
+              xb.T * (A_t.T * S_t1 * B_t + P_t.T) * ub +
+              ub.T * (B_t.T * S_t1 * B_t + R_t) * ub) +
+      xb.T * (A_t.T * sb_t1 + qb_t) +
+      ub.T * (B_t.T * sb_t1 + rb_t) +
+      cb_t.T * sb_t1 + s_t1 + q_t +
+      half * (cb_t.T * S_t1 * cb_t +
+              xb.T * A_t.T * S_t1 * cb_t +
+              ub.T * B_t.T * S_t1 * cb_t +
+              cb_t.T * S_t1 * B_t * ub +
+              cb_t.T * S_t1 * A_t * xb))
+
+  v_t_now = (
+      half * (xb.T * (A_t.T * S_t1 * A_t + Q_t) * xb +
+              ub.T * (B_t.T * S_t1 * A_t + P_t) * xb +
+              xb.T * (A_t.T * S_t1 * B_t + P_t.T) * ub +
+              ub.T * (B_t.T * S_t1 * B_t + R_t) * ub) +
+      xb.T * (A_t.T * sb_t1 + qb_t + half * A_t.T * S_t1 * cb_t) +
+      ub.T * (B_t.T * sb_t1 + rb_t + half * B_t.T * S_t1 * cb_t) +
+      half * cb_t.T * S_t1 * (A_t * xb + B_t * ub + cb_t) +
+      cb_t.T * sb_t1 + s_t1 + q_t)
+
+  v_t_now = (
+      half * (xb.T * (A_t.T * S_t1 * A_t + Q_t) * xb +
+              ub.T * (B_t.T * S_t1 * A_t + P_t) * xb +
+              xb.T * (A_t.T * S_t1 * B_t + P_t.T) * ub +
+              ub.T * (B_t.T * S_t1 * B_t + R_t) * ub) +
+      xb.T * (A_t.T * sb_t1 + qb_t + A_t.T * S_t1 * cb_t) +
+      ub.T * (B_t.T * sb_t1 + rb_t + B_t.T * S_t1 * cb_t) +
+      half * cb_t.T * S_t1 * cb_t +
+      cb_t.T * sb_t1 + s_t1 + q_t)
+
+  C_t = B_t.T * S_t1 * A_t + P_t
+  E_t = B_t.T * S_t1 * B_t + R_t
+  E_t_I = sympy.MatrixSymbol('E_t^-1', E_t.cols, E_t.rows)
+  L_t = -E_t_I * C_t
+  eb_t = B_t.T * S_t1 * cb_t + B_t.T * sb_t1 + rb_t
+  lb_t = -E_t_I * eb_t
+  D_t = A_t.T * S_t1 * A_t + Q_t
+  db_t = A_t.T * S_t1 * cb_t + A_t.T * sb_t1 + qb_t
+
+  v_t_now = (
+      half * (xb.T * D_t * xb + ub.T * C_t * xb +
+              xb.T * C_t.T * ub + ub.T * E_t * ub) +
+      xb.T * db_t + ub.T * eb_t +
+      half * cb_t.T * S_t1 * cb_t +
+      cb_t.T * sb_t1 + s_t1 + q_t)
+
+  v_t_final = (
+      half * xb.T * (D_t + L_t.T * C_t + C_t.T * L_t + L_t.T * E_t * L_t) * xb +
+      xb.T * (C_t.T * lb_t + L_t.T * E_t * lb_t + db_t + L_t.T * eb_t) +
+      half * lb_t.T * E_t * lb_t +
+      lb_t.T * eb_t +
+      cb_t.T * sb_t1 + s_t1 + q_t + half * cb_t.T * S_t1 * cb_t
+      )
+  verify_arguments(v_t_final, xb, E_t_I)
+  verify_equivalent(v_t.subs(ub, L_t * xb + lb_t), v_t_final, {E_t_I: E_t})
+
+  def v_t_from_s(this_S_t, this_sb_t, this_s_t):
+    return half * xb.T * this_S_t * xb + xb.T * this_sb_t + this_s_t
+
+  S_t_new_first = D_t + L_t.T * C_t + C_t.T * L_t + L_t.T * E_t * L_t
+  sb_t_new_first = db_t - C_t.T * E_t_I * eb_t
+  s_t_new_first = (half * lb_t.T * E_t * lb_t +
+                   lb_t.T * eb_t +
+                   cb_t.T * sb_t1 +
+                   s_t1 + q_t +
+                   half * cb_t.T * S_t1 * cb_t)
+  verify_equivalent(v_t_from_s(S_t_new_first, sb_t_new_first, s_t_new_first),
+                    v_t_final, {E_t_I: E_t})
+
+  S_t_new_end = D_t - C_t.T * E_t_I * C_t
+  sb_t_new_end = db_t - C_t.T * E_t_I * eb_t
+  s_t_new_end = (q_t - half * eb_t.T * E_t_I * eb_t +
+                 half * cb_t.T * S_t1 * cb_t + cb_t.T * sb_t1 + s_t1)
+  verify_equivalent(v_t_from_s(S_t_new_end, sb_t_new_end, s_t_new_end),
+                    v_t_final, {E_t_I: E_t})
+
+def check_forwards_cost():
+  v_tb = half * xb.T * S_tb * xb + xb.T * sb_tb + s_tb
+  verify_arguments(v_tb, xb)
+  g_tb = A_tb * xb_t1 + B_tb * ub + cb_tb
+  verify_arguments(g_tb, xb_t1, ub)
+  c_t1b = make_c_t().subs(xb, g_tb)
+  verify_arguments(c_t1b, xb_t1, ub)
+  v_t1b = v_tb.subs(xb, g_tb) + c_t1b
+  verify_arguments(v_t1b, xb_t1, ub)
+
+  v_t1b_now = (
+      half * g_tb.T * S_tb * g_tb +
+      g_tb.T * sb_tb + s_tb +
+      half * (g_tb.T * Q_t * g_tb +
+              ub.T * P_t * g_tb +
+              g_tb.T * P_t.T * ub +
+              ub.T * R_t * ub) +
+      g_tb.T * qb_t + ub.T * rb_t + q_t)
+
+  v_t1b_for_cost = (
+      half * (xb_t1.T * A_tb.T * (S_tb + Q_t) * A_tb * xb_t1 +
+              xb_t1.T * A_tb.T * (S_tb + Q_t) * B_tb * ub +
+              xb_t1.T * A_tb.T * (S_tb + Q_t) * cb_tb +
+              ub.T * B_tb.T * (S_tb + Q_t) * A_tb * xb_t1 +
+              ub.T * B_tb.T * (S_tb + Q_t) * B_tb * ub +
+              ub.T * B_tb.T * (S_tb + Q_t) * cb_tb +
+              cb_tb.T * (S_tb + Q_t) * A_tb * xb_t1 +
+              cb_tb.T * (S_tb + Q_t) * B_tb * ub +
+              cb_tb.T * (S_tb + Q_t) * cb_tb) +
+      xb_t1.T * A_tb.T * sb_tb +
+      ub.T * B_tb.T * sb_tb +
+      cb_tb.T * sb_tb +
+      s_tb +
+      half * (ub.T * P_t * A_tb * xb_t1 +
+              ub.T * P_t * B_tb * ub +
+              ub.T * P_t * cb_tb) +
+      half * (xb_t1.T * A_tb.T * P_t.T * ub +
+              ub.T * B_tb.T * P_t.T * ub +
+              cb_tb.T * P_t.T * ub) +
+      half * ub.T * R_t * ub +
+      xb_t1.T * A_tb.T * qb_t + ub.T * B_tb.T * qb_t + cb_tb.T * qb_t +
+      ub.T * rb_t + q_t)
+  verify_equivalent(v_t1b, v_t1b_for_cost)
+
+  S_and_Q = S_tb + Q_t
+
+  v_t1b_now = (
+      half * (xb_t1.T * A_tb.T * S_and_Q * A_tb * xb_t1 +
+              xb_t1.T * A_tb.T * S_and_Q * B_tb * ub +
+              xb_t1.T * A_tb.T * S_and_Q * cb_tb +
+              ub.T * B_tb.T * S_and_Q * A_tb * xb_t1 +
+              ub.T * B_tb.T * S_and_Q * B_tb * ub +
+              ub.T * B_tb.T * S_and_Q * cb_tb +
+              cb_tb.T * S_and_Q * A_tb * xb_t1 +
+              cb_tb.T * S_and_Q * B_tb * ub +
+              cb_tb.T * S_and_Q * cb_tb) +
+      xb_t1.T * A_tb.T * sb_tb +
+      ub.T * B_tb.T * sb_tb +
+      cb_tb.T * sb_tb +
+      s_tb +
+      half * (ub.T * P_t * A_tb * xb_t1 +
+              ub.T * P_t * B_tb * ub +
+              ub.T * P_t * cb_tb) +
+      half * (xb_t1.T * A_tb.T * P_t.T * ub +
+              ub.T * B_tb.T * P_t.T * ub +
+              cb_tb.T * P_t.T * ub) +
+      half * ub.T * R_t * ub +
+      xb_t1.T * A_tb.T * qb_t +
+      ub.T * B_tb.T * qb_t +
+      cb_tb.T * qb_t +
+      ub.T * rb_t +
+      q_t)
+
+  C_tb = B_tb.T * S_and_Q * A_tb + P_t * A_tb
+  E_tb = B_tb.T * S_and_Q * B_tb + B_tb.T * P_t.T + P_t * B_tb + R_t
+  E_tb_I = sympy.MatrixSymbol('Ebar_t^-1', E_tb.cols, E_tb.rows)
+  L_tb = -E_tb_I * C_tb
+  eb_tb = B_tb.T * S_and_Q * cb_tb + B_tb.T * sb_tb + P_t * cb_tb + B_tb.T * qb_t + rb_t
+  lb_tb = -E_tb_I * eb_tb
+  D_tb = A_tb.T * S_and_Q * A_tb
+  db_tb = A_tb.T * S_and_Q * cb_tb + A_tb.T * (sb_tb + qb_t)
+
+  v_t1b_now = (
+      half * (xb_t1.T * D_tb * xb_t1 +
+              xb_t1.T * C_tb.T * ub +
+              ub.T * C_tb * xb_t1 +
+              ub.T * E_tb * ub) +
+      xb_t1.T * db_tb +
+      ub.T * eb_tb +
+      half * cb_tb.T * S_and_Q * cb_tb +
+      cb_tb.T * sb_tb +
+      cb_tb.T * qb_t +
+      s_tb + q_t)
+
+  v_t1b_final = (
+      half * xb_t1.T * (D_tb - C_tb.T * E_tb_I * C_tb) * xb_t1 +
+      xb_t1.T * (db_tb - C_tb.T * E_tb_I * eb_tb) +
+      -half * eb_tb.T * E_tb_I * eb_tb +
+      half * cb_tb.T * S_and_Q * cb_tb +
+      cb_tb.T * sb_tb +
+      cb_tb.T * qb_t +
+      s_tb + q_t)
+  verify_arguments(v_t1b_final, xb_t1, E_tb_I)
+  verify_equivalent(v_t1b.subs(ub, -E_tb_I * C_tb * xb_t1 - E_tb_I * eb_tb),
+                    v_t1b_final, {E_tb_I: E_tb})
+
+def check_forwards_u():
+  S_and_Q = S_tb + Q_t
+
+  diff_start = (
+      half * (xb_t1.T * A_tb.T * S_and_Q * B_tb +
+              (B_tb.T * S_and_Q * A_tb * xb_t1).T +
+              2 * ub.T * B_tb.T * S_and_Q * B_tb +
+              (B_tb.T * S_and_Q * cb_tb).T +
+              cb_tb.T * S_and_Q * B_tb) +
+      sb_tb.T * B_tb +
+      half * (P_t * A_tb * xb_t1).T +
+      half * xb_t1.T * A_tb.T * P_t.T +
+      half * ub.T * (P_t * B_tb + B_tb.T * P_t.T) +
+      half * ub.T * (B_tb.T * P_t.T + P_t * B_tb) +
+      half * (P_t * cb_tb).T +
+      half * cb_tb.T * P_t.T +
+      ub.T * R_t +
+      (B_tb.T * qb_t).T + rb_t.T)
+  verify_arguments(diff_start, xb_t1, ub)
+
+  diff_end = (
+      xb_t1.T * (A_tb.T * S_and_Q * B_tb + A_tb.T * P_t.T) +
+      ub.T * (B_tb.T * S_and_Q * B_tb + B_tb.T * P_t.T + P_t * B_tb + R_t) +
+      cb_tb.T * S_and_Q * B_tb +
+      sb_tb.T * B_tb +
+      cb_tb.T * P_t.T +
+      qb_t.T * B_tb +
+      rb_t.T)
+  verify_equivalent(diff_start, diff_end)
+
+def main():
+  sympy.init_printing(use_unicode=True)
+  check_backwards_cost()
+  check_forwards_cost()
+  check_forwards_u()
+
+if __name__ == '__main__':
+  main()
diff --git a/y2014/wpilib/wpilib_interface.cc b/y2014/wpilib/wpilib_interface.cc
index 5195ab6..a53d54b 100644
--- a/y2014/wpilib/wpilib_interface.cc
+++ b/y2014/wpilib/wpilib_interface.cc
@@ -4,6 +4,7 @@
 #include <inttypes.h>
 
 #include <thread>
+#include <chrono>
 #include <mutex>
 #include <functional>
 
@@ -260,8 +261,8 @@
     bottom_reader_.Start();
     dma_synchronizer_->Start();
 
-    ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
-                                        ::aos::time::Time::InMS(4));
+    ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
+                                        ::std::chrono::milliseconds(4));
 
     ::aos::SetCurrentThreadRealtimePriority(40);
     while (run_) {
@@ -504,8 +505,8 @@
     ::aos::SetCurrentThreadName("Solenoids");
     ::aos::SetCurrentThreadRealtimePriority(27);
 
-    ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(20),
-                                        ::aos::time::Time::InMS(1));
+    ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(20),
+                                        ::std::chrono::milliseconds(1));
 
     while (run_) {
       {
diff --git a/y2014_bot3/BUILD b/y2014_bot3/BUILD
index 3ec0bb5..1c07423 100644
--- a/y2014_bot3/BUILD
+++ b/y2014_bot3/BUILD
@@ -16,21 +16,22 @@
     '//frc971/queues:gyro',
     '//y2014_bot3/autonomous:auto_queue',
     '//y2014_bot3/control_loops/rollers:rollers_queue',
-    '//y2014_bot3/control_loops/drivetrain:drivetrain_queue',
+    '//frc971/control_loops/drivetrain:drivetrain_queue',
   ],
 )
 
 aos_downloader(
-  name = 'download',
+  name = 'download_stripped',
   start_srcs = [
-    '//aos:prime_start_binaries',
-    '//y2014_bot3/control_loops/drivetrain:drivetrain',
-    '//y2014_bot3/control_loops/rollers:rollers',
-    '//y2014_bot3/autonomous:auto',
-    ':joystick_reader',
-    '//y2014_bot3/wpilib:wpilib_interface',
+    ':joystick_reader.stripped',
+    '//aos:prime_start_binaries_stripped',
+    '//y2014_bot3/autonomous:auto.stripped',
+    '//y2014_bot3/control_loops/drivetrain:drivetrain.stripped',
+    '//y2014_bot3/control_loops/rollers:rollers.stripped',
+    '//y2014_bot3/wpilib:wpilib_interface.stripped',
+
   ],
   srcs = [
-    '//aos:prime_binaries',
+    '//aos:prime_binaries_stripped',
   ],
 )
diff --git a/y2014_bot3/autonomous/BUILD b/y2014_bot3/autonomous/BUILD
index f90ce74..bfd7f34 100644
--- a/y2014_bot3/autonomous/BUILD
+++ b/y2014_bot3/autonomous/BUILD
@@ -20,8 +20,7 @@
   deps = [
     ':auto_queue',
     '//aos/common/controls:control_loop',
-    '//y2014_bot3/control_loops/drivetrain:drivetrain_queue',
-    '//y2014_bot3/control_loops/drivetrain:drivetrain_lib',
+    '//frc971/control_loops/drivetrain:drivetrain_queue',
     '//y2014_bot3/control_loops/rollers:rollers_queue',
     '//aos/common:time',
     '//aos/common/util:phased_loop',
diff --git a/y2014_bot3/autonomous/auto.cc b/y2014_bot3/autonomous/auto.cc
index 3724cbe..80f2b09 100644
--- a/y2014_bot3/autonomous/auto.cc
+++ b/y2014_bot3/autonomous/auto.cc
@@ -8,13 +8,12 @@
 #include "aos/common/logging/logging.h"
 #include "aos/common/logging/queue_logging.h"
 
+#include "frc971/control_loops/drivetrain/drivetrain.q.h"
 #include "y2014_bot3/autonomous/auto.q.h"
-#include "y2014_bot3/control_loops/drivetrain/drivetrain.q.h"
-#include "y2014_bot3/control_loops/drivetrain/drivetrain.h"
 #include "y2014_bot3/control_loops/rollers/rollers.q.h"
 
 using ::aos::time::Time;
-using ::y2014_bot3::control_loops::drivetrain_queue;
+using ::frc971::control_loops::drivetrain_queue;
 using ::y2014_bot3::control_loops::rollers_queue;
 
 namespace y2014_bot3 {
@@ -35,7 +34,7 @@
 
 void ResetDrivetrain() {
   LOG(INFO, "resetting the drivetrain\n");
-  control_loops::drivetrain_queue.goal.MakeWithBuilder()
+  ::frc971::control_loops::drivetrain_queue.goal.MakeWithBuilder()
       .control_loop_driving(false)
       .steering(0.0)
       .throttle(0.0)
@@ -47,11 +46,11 @@
 }
 
 void InitializeEncoders() {
-  control_loops::drivetrain_queue.status.FetchAnother();
+  ::frc971::control_loops::drivetrain_queue.status.FetchAnother();
   left_initial_position =
-      control_loops::drivetrain_queue.status->estimated_left_position;
+      ::frc971::control_loops::drivetrain_queue.status->estimated_left_position;
   right_initial_position =
-      control_loops::drivetrain_queue.status->estimated_right_position;
+      ::frc971::control_loops::drivetrain_queue.status->estimated_right_position;
 }
 
 void HandleAuto() {
@@ -63,7 +62,7 @@
   InitializeEncoders();
 
   LOG(INFO, "Driving\n");
-  control_loops::drivetrain_queue.goal.MakeWithBuilder()
+  ::frc971::control_loops::drivetrain_queue.goal.MakeWithBuilder()
       .control_loop_driving(false)
       .highgear(false)
       .quickturn(false)
@@ -76,7 +75,7 @@
       .Send();
   time::SleepFor(time::Time::InSeconds(2.0));
 
-  control_loops::drivetrain_queue.goal.MakeWithBuilder()
+  ::frc971::control_loops::drivetrain_queue.goal.MakeWithBuilder()
       .control_loop_driving(false)
       .highgear(false)
       .quickturn(false)
diff --git a/y2014_bot3/control_loops/drivetrain/BUILD b/y2014_bot3/control_loops/drivetrain/BUILD
index 32afd4b..6bd7e33 100644
--- a/y2014_bot3/control_loops/drivetrain/BUILD
+++ b/y2014_bot3/control_loops/drivetrain/BUILD
@@ -2,45 +2,6 @@
 
 load('/aos/build/queues', 'queue_library')
 
-cc_binary(
-  name = 'replay_drivetrain',
-  srcs = [
-    'replay_drivetrain.cc',
-  ],
-  deps = [
-    ':drivetrain_queue',
-    '//aos/common/controls:replay_control_loop',
-    '//aos/linux_code:init',
-  ],
-)
-
-queue_library(
-  name = 'drivetrain_queue',
-  srcs = [
-    'drivetrain.q',
-  ],
-  deps = [
-    '//aos/common/controls:control_loop_queues',
-  ],
-)
-
-cc_library(
-  name = 'polydrivetrain_plants',
-  srcs = [
-    'polydrivetrain_dog_motor_plant.cc',
-    'drivetrain_dog_motor_plant.cc',
-    'polydrivetrain_cim_plant.cc',
-  ],
-  hdrs = [
-    'polydrivetrain_dog_motor_plant.h',
-    'drivetrain_dog_motor_plant.h',
-    'polydrivetrain_cim_plant.h',
-  ],
-  deps = [
-    '//frc971/control_loops:state_feedback_loop',
-  ],
-)
-
 genrule(
   name = 'genrule_drivetrain',
   visibility = ['//visibility:private'],
@@ -51,47 +12,55 @@
   outs = [
     'drivetrain_dog_motor_plant.h',
     'drivetrain_dog_motor_plant.cc',
+    'kalman_drivetrain_motor_plant.h',
+    'kalman_drivetrain_motor_plant.cc',
+  ],
+)
+
+genrule(
+  name = 'genrule_polydrivetrain',
+  visibility = ['//visibility:private'],
+  cmd = '$(location //y2014_bot3/control_loops/python:polydrivetrain) $(OUTS)',
+  tools = [
+    '//y2014_bot3/control_loops/python:polydrivetrain',
+  ],
+  outs = [
+    'polydrivetrain_dog_motor_plant.h',
+    'polydrivetrain_dog_motor_plant.cc',
+    'polydrivetrain_cim_plant.h',
+    'polydrivetrain_cim_plant.cc',
   ],
 )
 
 cc_library(
-  name = 'drivetrain_lib',
-  hdrs = [
-    'drivetrain.h',
-  ],
+  name = 'polydrivetrain_plants',
   srcs = [
-    'drivetrain.cc',
+    'polydrivetrain_dog_motor_plant.cc',
+    'drivetrain_dog_motor_plant.cc',
+    'kalman_drivetrain_motor_plant.cc',
+  ],
+  hdrs = [
+    'polydrivetrain_dog_motor_plant.h',
+    'drivetrain_dog_motor_plant.h',
+    'kalman_drivetrain_motor_plant.h',
   ],
   deps = [
-    ':polydrivetrain_plants',
-    ':drivetrain_queue',
-    '//aos/common/controls:control_loop',
-    '//aos/common/controls:polytope',
     '//frc971/control_loops:state_feedback_loop',
-    '//frc971/control_loops:coerce_goal',
-    '//frc971/queues:gyro',
-    '//aos/common/logging:queue_logging',
-    '//aos/common/logging:matrix_logging',
-    '//aos/common:math',
-    '//aos/common/util:log_interval',
-    '//frc971:shifter_hall_effect',
   ],
 )
 
-cc_test(
-  name = 'drivetrain_lib_test',
+cc_library(
+  name = 'drivetrain_base',
   srcs = [
-    'drivetrain_lib_test.cc',
+    'drivetrain_base.cc',
+  ],
+  hdrs = [
+    'drivetrain_base.h',
   ],
   deps = [
-    '//aos/testing:googletest',
-    ':drivetrain_queue',
-    ':drivetrain_lib',
-    '//aos/common/controls:control_loop_test',
-    '//frc971/control_loops:state_feedback_loop',
-    '//frc971/queues:gyro',
-    '//aos/common:queues',
-    '//aos/common/network:team_number',
+    ':polydrivetrain_plants',
+    '//frc971/control_loops/drivetrain:drivetrain_config',
+    '//frc971:shifter_hall_effect',
   ],
 )
 
@@ -101,8 +70,8 @@
     'drivetrain_main.cc',
   ],
   deps = [
-    ':drivetrain_lib',
-    ':drivetrain_queue',
+    ':drivetrain_base',
     '//aos/linux_code:init',
+    '//frc971/control_loops/drivetrain:drivetrain_lib',
   ],
 )
diff --git a/y2014_bot3/control_loops/drivetrain/drivetrain.cc b/y2014_bot3/control_loops/drivetrain/drivetrain.cc
deleted file mode 100644
index 125dd24..0000000
--- a/y2014_bot3/control_loops/drivetrain/drivetrain.cc
+++ /dev/null
@@ -1,571 +0,0 @@
-#include "y2014_bot3/control_loops/drivetrain/drivetrain.h"
-
-#include <stdio.h>
-#include <sched.h>
-#include <cmath>
-#include <memory>
-#include "Eigen/Dense"
-
-#include "aos/common/logging/logging.h"
-#include "aos/common/controls/polytope.h"
-#include "aos/common/commonmath.h"
-#include "aos/common/logging/queue_logging.h"
-#include "aos/common/logging/matrix_logging.h"
-
-#include "frc971/control_loops/state_feedback_loop.h"
-#include "frc971/control_loops/coerce_goal.h"
-#include "y2014_bot3/control_loops/drivetrain/polydrivetrain_cim_plant.h"
-#include "y2014_bot3/control_loops/drivetrain/drivetrain.q.h"
-#include "frc971/queues/gyro.q.h"
-#include "frc971/shifter_hall_effect.h"
-#include "y2014_bot3/control_loops/drivetrain/drivetrain_dog_motor_plant.h"
-#include "y2014_bot3/control_loops/drivetrain/polydrivetrain_dog_motor_plant.h"
-
-using ::frc971::sensors::gyro_reading;
-
-namespace y2014_bot3 {
-namespace control_loops {
-
-class DrivetrainMotorsSS {
- public:
-  class LimitedDrivetrainLoop : public StateFeedbackLoop<4, 2, 2> {
-   public:
-    LimitedDrivetrainLoop(StateFeedbackLoop<4, 2, 2> &&loop)
-        : StateFeedbackLoop<4, 2, 2>(::std::move(loop)),
-          U_Poly_((Eigen::Matrix<double, 4, 2>() << 1, 0, -1, 0, 0, 1, 0, -1)
-                      .finished(),
-                  (Eigen::Matrix<double, 4, 1>() << 12.0, 12.0, 12.0, 12.0)
-                      .finished()) {
-      ::aos::controls::HPolytope<0>::Init();
-      T << 1, -1, 1, 1;
-      T_inverse = T.inverse();
-    }
-
-    bool output_was_capped() const { return output_was_capped_; }
-
-   private:
-    virtual void CapU() {
-      const Eigen::Matrix<double, 4, 1> error = R() - X_hat();
-
-      if (::std::abs(U(0, 0)) > 12.0 || ::std::abs(U(1, 0)) > 12.0) {
-        mutable_U() =
-            U() * 12.0 / ::std::max(::std::abs(U(0, 0)), ::std::abs(U(1, 0)));
-        LOG_MATRIX(DEBUG, "U is now", U());
-        // TODO(Austin): Figure out why the polytope stuff wasn't working and
-        // remove this hack.
-        output_was_capped_ = true;
-        return;
-
-        LOG_MATRIX(DEBUG, "U at start", U());
-        LOG_MATRIX(DEBUG, "R at start", R());
-        LOG_MATRIX(DEBUG, "Xhat at start", X_hat());
-
-        Eigen::Matrix<double, 2, 2> position_K;
-        position_K << K(0, 0), K(0, 2), K(1, 0), K(1, 2);
-        Eigen::Matrix<double, 2, 2> velocity_K;
-        velocity_K << K(0, 1), K(0, 3), K(1, 1), K(1, 3);
-
-        Eigen::Matrix<double, 2, 1> position_error;
-        position_error << error(0, 0), error(2, 0);
-        const auto drive_error = T_inverse * position_error;
-        Eigen::Matrix<double, 2, 1> velocity_error;
-        velocity_error << error(1, 0), error(3, 0);
-        LOG_MATRIX(DEBUG, "error", error);
-
-        const auto &poly = U_Poly_;
-        const Eigen::Matrix<double, 4, 2> pos_poly_H =
-            poly.H() * position_K * T;
-        const Eigen::Matrix<double, 4, 1> pos_poly_k =
-            poly.k() - poly.H() * velocity_K * velocity_error;
-        const ::aos::controls::HPolytope<2> pos_poly(pos_poly_H, pos_poly_k);
-
-        Eigen::Matrix<double, 2, 1> adjusted_pos_error;
-        {
-          const auto &P = drive_error;
-
-          Eigen::Matrix<double, 1, 2> L45;
-          L45 << ::aos::sign(P(1, 0)), -::aos::sign(P(0, 0));
-          const double w45 = 0;
-
-          Eigen::Matrix<double, 1, 2> LH;
-          if (::std::abs(P(0, 0)) > ::std::abs(P(1, 0))) {
-            LH << 0, 1;
-          } else {
-            LH << 1, 0;
-          }
-          const double wh = LH.dot(P);
-
-          Eigen::Matrix<double, 2, 2> standard;
-          standard << L45, LH;
-          Eigen::Matrix<double, 2, 1> W;
-          W << w45, wh;
-          const Eigen::Matrix<double, 2, 1> intersection =
-              standard.inverse() * W;
-
-          bool is_inside_h;
-          const auto adjusted_pos_error_h = frc971::control_loops::DoCoerceGoal(
-              pos_poly, LH, wh, drive_error, &is_inside_h);
-          const auto adjusted_pos_error_45 =
-              frc971::control_loops::DoCoerceGoal(pos_poly, L45, w45,
-                                                  intersection, nullptr);
-          if (pos_poly.IsInside(intersection)) {
-            adjusted_pos_error = adjusted_pos_error_h;
-          } else {
-            if (is_inside_h) {
-              if (adjusted_pos_error_h.norm() > adjusted_pos_error_45.norm()) {
-                adjusted_pos_error = adjusted_pos_error_h;
-              } else {
-                adjusted_pos_error = adjusted_pos_error_45;
-              }
-            } else {
-              adjusted_pos_error = adjusted_pos_error_45;
-            }
-          }
-        }
-
-        LOG_MATRIX(DEBUG, "adjusted_pos_error", adjusted_pos_error);
-        mutable_U() =
-            velocity_K * velocity_error + position_K * T * adjusted_pos_error;
-        LOG_MATRIX(DEBUG, "U is now", U());
-      } else {
-        output_was_capped_ = false;
-      }
-    }
-
-    const ::aos::controls::HPolytope<2> U_Poly_;
-    Eigen::Matrix<double, 2, 2> T, T_inverse;
-    bool output_was_capped_ = false;
-  };
-
-  DrivetrainMotorsSS()
-      : loop_(new LimitedDrivetrainLoop(
-            ::y2014_bot3::control_loops::drivetrain::MakeDrivetrainLoop())),
-        filtered_offset_(0.0),
-        gyro_(0.0),
-        left_goal_(0.0),
-        right_goal_(0.0),
-        raw_left_(0.0),
-        raw_right_(0.0) {
-    // Low gear on both.
-    loop_->set_controller_index(0);
-  }
-
-  void SetGoal(double left, double left_velocity, double right,
-               double right_velocity) {
-    left_goal_ = left;
-    right_goal_ = right;
-    loop_->mutable_R() << left, left_velocity, right, right_velocity;
-  }
-  void SetRawPosition(double left, double right) {
-    raw_right_ = right;
-    raw_left_ = left;
-    Eigen::Matrix<double, 2, 1> Y;
-    Y << left + filtered_offset_, right - filtered_offset_;
-    loop_->Correct(Y);
-  }
-  void SetPosition(double left, double right, double gyro) {
-    // Decay the offset quickly because this gyro is great.
-    const double offset = (right - left - gyro * kDrivetrainTurnWidth) / 2.0;
-    filtered_offset_ = 0.25 * offset + 0.75 * filtered_offset_;
-    gyro_ = gyro;
-    SetRawPosition(left, right);
-  }
-
-  void SetExternalMotors(double left_voltage, double right_voltage) {
-    loop_->mutable_U() << left_voltage, right_voltage;
-  }
-
-  void Update(bool stop_motors, bool enable_control_loop) {
-    if (enable_control_loop) {
-      loop_->Update(stop_motors);
-    } else {
-      if (stop_motors) {
-        loop_->mutable_U().setZero();
-        loop_->mutable_U_uncapped().setZero();
-      }
-      loop_->UpdateObserver(loop_->U());
-    }
-    ::Eigen::Matrix<double, 4, 1> E = loop_->R() - loop_->X_hat();
-    LOG_MATRIX(DEBUG, "E", E);
-  }
-
-  double GetEstimatedRobotSpeed() const {
-    // lets just call the average of left and right velocities close enough
-    return (loop_->X_hat(1, 0) + loop_->X_hat(3, 0)) / 2;
-  }
-
-  double GetEstimatedLeftEncoder() const { return loop_->X_hat(0, 0); }
-
-  double GetEstimatedRightEncoder() const { return loop_->X_hat(2, 0); }
-
-  bool OutputWasCapped() const { return loop_->output_was_capped(); }
-
-  void SendMotors(DrivetrainQueue::Output *output) const {
-    if (output) {
-      output->left_voltage = loop_->U(0, 0);
-      output->right_voltage = loop_->U(1, 0);
-      output->left_high = false;
-      output->right_high = false;
-    }
-  }
-
-  const LimitedDrivetrainLoop &loop() const { return *loop_; }
-
- private:
-  ::std::unique_ptr<LimitedDrivetrainLoop> loop_;
-
-  double filtered_offset_;
-  double gyro_;
-  double left_goal_;
-  double right_goal_;
-  double raw_left_;
-  double raw_right_;
-};
-
-class PolyDrivetrain {
- public:
-  enum Gear { HIGH, LOW };
-  // Stall Torque in N m
-  static constexpr double kStallTorque = 2.42;
-  // Stall Current in Amps
-  static constexpr double kStallCurrent = 133.0;
-  // Free Speed in RPM. Used number from last year.
-  static constexpr double kFreeSpeed = 4650.0;
-  // Free Current in Amps
-  static constexpr double kFreeCurrent = 2.7;
-  // Moment of inertia of the drivetrain in kg m^2
-  // Just borrowed from last year.
-  static constexpr double J = 10;
-  // Mass of the robot, in kg.
-  static constexpr double m = 68;
-  // Radius of the robot, in meters (from last year).
-  static constexpr double rb = 0.66675 / 2.0;
-  static constexpr double kWheelRadius = 0.04445;
-  // Resistance of the motor, divided by the number of motors.
-  static constexpr double kR =
-      (12.0 / kStallCurrent / 4 + 0.03) / (0.93 * 0.93);
-  // Motor velocity constant
-  static constexpr double Kv =
-      ((kFreeSpeed / 60.0 * 2.0 * M_PI) / (12.0 - kR * kFreeCurrent));
-  // Torque constant
-  static constexpr double Kt = kStallTorque / kStallCurrent;
-
-  PolyDrivetrain()
-      : U_Poly_((Eigen::Matrix<double, 4, 2>() << /*[[*/ 1, 0 /*]*/,
-                 /*[*/ -1, 0 /*]*/,
-                 /*[*/ 0, 1 /*]*/,
-                 /*[*/ 0, -1 /*]]*/).finished(),
-                (Eigen::Matrix<double, 4, 1>() << /*[[*/ 12 /*]*/,
-                 /*[*/ 12 /*]*/,
-                 /*[*/ 12 /*]*/,
-                 /*[*/ 12 /*]]*/).finished()),
-        loop_(new StateFeedbackLoop<2, 2, 2>(
-            ::y2014_bot3::control_loops::MakeVelocityDrivetrainLoop())),
-        ttrust_(1.1),
-        wheel_(0.0),
-        throttle_(0.0),
-        quickturn_(false),
-        stale_count_(0),
-        position_time_delta_(0.01),
-        left_gear_(LOW),
-        right_gear_(LOW),
-        counter_(0) {
-    last_position_.Zero();
-    position_.Zero();
-  }
-
-  static double MotorSpeed(bool high_gear, double velocity) {
-    if (high_gear) {
-      return velocity / kDrivetrainHighGearRatio / kWheelRadius;
-    } else {
-      return velocity / kDrivetrainLowGearRatio / kWheelRadius;
-    }
-  }
-
-  void SetGoal(double wheel, double throttle, bool quickturn, bool highgear) {
-    const double kWheelNonLinearity = 0.5;
-    // Apply a sin function that's scaled to make it feel better.
-    const double angular_range = M_PI_2 * kWheelNonLinearity;
-
-    quickturn_ = quickturn;
-    wheel_ = sin(angular_range * wheel) / sin(angular_range);
-    wheel_ = sin(angular_range * wheel_) / sin(angular_range);
-    if (!quickturn_) {
-      wheel_ *= 1.5;
-    }
-
-    static const double kThrottleDeadband = 0.05;
-    if (::std::abs(throttle) < kThrottleDeadband) {
-      throttle_ = 0;
-    } else {
-      throttle_ = copysign((::std::abs(throttle) - kThrottleDeadband) /
-                               (1.0 - kThrottleDeadband),
-                           throttle);
-    }
-
-    Gear requested_gear = highgear ? HIGH : LOW;
-    left_gear_ = right_gear_ = requested_gear;
-  }
-
-  void SetPosition(const DrivetrainQueue::Position *position) {
-    if (position == NULL) {
-      ++stale_count_;
-    } else {
-      last_position_ = position_;
-      position_ = *position;
-      position_time_delta_ = (stale_count_ + 1) * 0.01;
-      stale_count_ = 0;
-    }
-  }
-
-  double FilterVelocity(double throttle) {
-    const Eigen::Matrix<double, 2, 2> FF =
-        loop_->B().inverse() *
-        (Eigen::Matrix<double, 2, 2>::Identity() - loop_->A());
-
-    constexpr int kHighGearController = 3;
-    const Eigen::Matrix<double, 2, 2> FF_high =
-        loop_->controller(kHighGearController).plant.B().inverse() *
-        (Eigen::Matrix<double, 2, 2>::Identity() -
-         loop_->controller(kHighGearController).plant.A());
-
-    ::Eigen::Matrix<double, 1, 2> FF_sum = FF.colwise().sum();
-    int min_FF_sum_index;
-    const double min_FF_sum = FF_sum.minCoeff(&min_FF_sum_index);
-    const double min_K_sum = loop_->K().col(min_FF_sum_index).sum();
-    const double high_min_FF_sum = FF_high.col(0).sum();
-
-    const double adjusted_ff_voltage = ::aos::Clip(
-        throttle * 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0);
-    return (adjusted_ff_voltage +
-            ttrust_ * min_K_sum * (loop_->X_hat(0, 0) + loop_->X_hat(1, 0)) /
-                2.0) /
-           (ttrust_ * min_K_sum + min_FF_sum);
-  }
-
-  double MaxVelocity() {
-    const Eigen::Matrix<double, 2, 2> FF =
-        loop_->B().inverse() *
-        (Eigen::Matrix<double, 2, 2>::Identity() - loop_->A());
-
-    constexpr int kHighGearController = 3;
-    const Eigen::Matrix<double, 2, 2> FF_high =
-        loop_->controller(kHighGearController).plant.B().inverse() *
-        (Eigen::Matrix<double, 2, 2>::Identity() -
-         loop_->controller(kHighGearController).plant.A());
-
-    ::Eigen::Matrix<double, 1, 2> FF_sum = FF.colwise().sum();
-    int min_FF_sum_index;
-    const double min_FF_sum = FF_sum.minCoeff(&min_FF_sum_index);
-    // const double min_K_sum = loop_->K().col(min_FF_sum_index).sum();
-    const double high_min_FF_sum = FF_high.col(0).sum();
-
-    const double adjusted_ff_voltage =
-        ::aos::Clip(12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0);
-    return adjusted_ff_voltage / min_FF_sum;
-  }
-
-  void Update() {
-    // TODO(austin): Observer for the current velocity instead of difference
-    // calculations.
-    ++counter_;
-
-    const double current_left_velocity =
-        (position_.left_encoder - last_position_.left_encoder) /
-        position_time_delta_;
-    const double current_right_velocity =
-        (position_.right_encoder - last_position_.right_encoder) /
-        position_time_delta_;
-    const double left_motor_speed = MotorSpeed(left_gear_ == HIGH,
-        current_left_velocity);
-    const double right_motor_speed = MotorSpeed(right_gear_ == HIGH,
-        current_right_velocity);
-
-    {
-      CIMLogging logging;
-
-      // Reset the CIM model to the current conditions to be ready for when we
-      // shift.
-      logging.left_in_gear = true;
-      logging.left_motor_speed = left_motor_speed;
-      logging.left_velocity = current_left_velocity;
-
-      logging.right_in_gear = true;
-      logging.right_motor_speed = right_motor_speed;
-      logging.right_velocity = current_right_velocity;
-
-      LOG_STRUCT(DEBUG, "currently", logging);
-    }
-
-    {
-      // FF * X = U (steady state)
-      const Eigen::Matrix<double, 2, 2> FF =
-          loop_->B().inverse() *
-          (Eigen::Matrix<double, 2, 2>::Identity() - loop_->A());
-
-      // Invert the plant to figure out how the velocity filter would have to
-      // work
-      // out in order to filter out the forwards negative inertia.
-      // This math assumes that the left and right power and velocity are
-      // equals,
-      // and that the plant is the same on the left and right.
-      const double fvel = FilterVelocity(throttle_);
-
-      const double sign_svel = wheel_ * ((fvel > 0.0) ? 1.0 : -1.0);
-      double steering_velocity;
-      if (quickturn_) {
-        steering_velocity = wheel_ * MaxVelocity();
-      } else {
-        steering_velocity = ::std::abs(fvel) * wheel_;
-      }
-      const double left_velocity = fvel - steering_velocity;
-      const double right_velocity = fvel + steering_velocity;
-      LOG(DEBUG, "l=%f r=%f\n", left_velocity, right_velocity);
-
-      // Integrate velocity to get the position.
-      // This position is used to get integral control.
-      loop_->mutable_R() << left_velocity, right_velocity;
-
-      if (!quickturn_) {
-        // K * R = w
-        Eigen::Matrix<double, 1, 2> equality_k;
-        equality_k << 1 + sign_svel, -(1 - sign_svel);
-        const double equality_w = 0.0;
-
-        // Construct a constraint on R by manipulating the constraint on U
-        ::aos::controls::HPolytope<2> R_poly = ::aos::controls::HPolytope<2>(
-            U_Poly_.H() * (loop_->K() + FF),
-            U_Poly_.k() + U_Poly_.H() * loop_->K() * loop_->X_hat());
-
-        // Limit R back inside the box.
-        loop_->mutable_R() = frc971::control_loops::CoerceGoal(
-            R_poly, equality_k, equality_w, loop_->R());
-      }
-
-      const Eigen::Matrix<double, 2, 1> FF_volts = FF * loop_->R();
-      const Eigen::Matrix<double, 2, 1> U_ideal =
-          loop_->K() * (loop_->R() - loop_->X_hat()) + FF_volts;
-
-      for (int i = 0; i < 2; i++) {
-        loop_->mutable_U()[i] = ::aos::Clip(U_ideal[i], -12, 12);
-      }
-
-      // TODO(austin): Model this better.
-      // TODO(austin): Feedback?
-      loop_->mutable_X_hat() =
-          loop_->A() * loop_->X_hat() + loop_->B() * loop_->U();
-    }
-  }
-
-  void SendMotors(DrivetrainQueue::Output *output) {
-    if (output != NULL) {
-      output->left_voltage = loop_->U(0, 0);
-      output->right_voltage = loop_->U(1, 0);
-      output->left_high = left_gear_ == HIGH;
-      output->right_high = right_gear_ == HIGH;
-    }
-  }
-
- private:
-  const ::aos::controls::HPolytope<2> U_Poly_;
-
-  ::std::unique_ptr<StateFeedbackLoop<2, 2, 2>> loop_;
-
-  const double ttrust_;
-  double wheel_;
-  double throttle_;
-  bool quickturn_;
-  int stale_count_;
-  double position_time_delta_;
-  Gear left_gear_;
-  Gear right_gear_;
-  DrivetrainQueue::Position last_position_;
-  DrivetrainQueue::Position position_;
-  int counter_;
-};
-
-constexpr double PolyDrivetrain::kStallTorque;
-constexpr double PolyDrivetrain::kStallCurrent;
-constexpr double PolyDrivetrain::kFreeSpeed;
-constexpr double PolyDrivetrain::kFreeCurrent;
-constexpr double PolyDrivetrain::J;
-constexpr double PolyDrivetrain::m;
-constexpr double PolyDrivetrain::rb;
-constexpr double PolyDrivetrain::kWheelRadius;
-constexpr double PolyDrivetrain::kR;
-constexpr double PolyDrivetrain::Kv;
-constexpr double PolyDrivetrain::Kt;
-
-void DrivetrainLoop::RunIteration(const DrivetrainQueue::Goal *goal,
-                                  const DrivetrainQueue::Position *position,
-                                  DrivetrainQueue::Output *output,
-                                  DrivetrainQueue::Status *status) {
-  // TODO(aschuh): These should be members of the class.
-  static DrivetrainMotorsSS dt_closedloop;
-  static PolyDrivetrain dt_openloop;
-
-  bool bad_pos = false;
-  if (position == nullptr) {
-    LOG_INTERVAL(no_position_);
-    bad_pos = true;
-  }
-  no_position_.Print();
-
-  bool control_loop_driving = false;
-  if (goal) {
-    double wheel = goal->steering;
-    double throttle = goal->throttle;
-    bool quickturn = goal->quickturn;
-    bool highgear = goal->highgear;
-
-    control_loop_driving = goal->control_loop_driving;
-    double left_goal = goal->left_goal;
-    double right_goal = goal->right_goal;
-
-    dt_closedloop.SetGoal(left_goal, goal->left_velocity_goal, right_goal,
-                          goal->right_velocity_goal);
-    dt_openloop.SetGoal(wheel, throttle, quickturn, highgear);
-  }
-
-  if (!bad_pos) {
-    const double left_encoder = position->left_encoder;
-    const double right_encoder = position->right_encoder;
-    if (gyro_reading.FetchLatest()) {
-      LOG_STRUCT(DEBUG, "using", *gyro_reading.get());
-      dt_closedloop.SetPosition(left_encoder, right_encoder,
-                                gyro_reading->angle);
-    } else {
-      dt_closedloop.SetRawPosition(left_encoder, right_encoder);
-    }
-  }
-  dt_openloop.SetPosition(position);
-  dt_openloop.Update();
-
-  if (control_loop_driving) {
-    dt_closedloop.Update(output == NULL, true);
-    dt_closedloop.SendMotors(output);
-  } else {
-    dt_openloop.SendMotors(output);
-    if (output) {
-      dt_closedloop.SetExternalMotors(output->left_voltage,
-                                      output->right_voltage);
-    }
-    dt_closedloop.Update(output == NULL, false);
-  }
-
-  // set the output status of the control loop state
-  if (status) {
-    status->robot_speed = dt_closedloop.GetEstimatedRobotSpeed();
-    status->estimated_left_position = dt_closedloop.GetEstimatedLeftEncoder();
-    status->estimated_right_position = dt_closedloop.GetEstimatedRightEncoder();
-
-    status->estimated_left_velocity = dt_closedloop.loop().X_hat(1, 0);
-    status->estimated_right_velocity = dt_closedloop.loop().X_hat(3, 0);
-    status->output_was_capped = dt_closedloop.OutputWasCapped();
-    status->uncapped_left_voltage = dt_closedloop.loop().U_uncapped(0, 0);
-    status->uncapped_right_voltage = dt_closedloop.loop().U_uncapped(1, 0);
-  }
-}
-
-}  // namespace control_loops
-}  // namespace y2014_bot3
diff --git a/y2014_bot3/control_loops/drivetrain/drivetrain.h b/y2014_bot3/control_loops/drivetrain/drivetrain.h
deleted file mode 100644
index dfb7269..0000000
--- a/y2014_bot3/control_loops/drivetrain/drivetrain.h
+++ /dev/null
@@ -1,58 +0,0 @@
-#ifndef Y2014_BOT3_CONTROL_LOOPS_DRIVETRAIN_H_
-#define Y2014_BOT3_CONTROL_LOOPS_DRIVETRAIN_H_
-
-#include "Eigen/Dense"
-
-#include "aos/common/controls/polytope.h"
-#include "aos/common/controls/control_loop.h"
-#include "aos/common/controls/polytope.h"
-#include "aos/common/util/log_interval.h"
-
-#include "frc971/shifter_hall_effect.h"
-#include "y2014_bot3/control_loops/drivetrain/drivetrain.q.h"
-
-namespace y2014_bot3 {
-namespace control_loops {
-
-// Constants
-// TODO(comran): Get actual constants.
-constexpr double kDrivetrainTurnWidth = 0.63;
-constexpr double kDrivetrainEncoderRatio = 18.0 / 44.0;
-constexpr double kDrivetrainHighGearRatio =
-    kDrivetrainEncoderRatio * 18.0 / 60.0;
-constexpr double kDrivetrainLowGearRatio = kDrivetrainHighGearRatio;
-const ::frc971::constants::ShifterHallEffect kDrivetrainRightShifter{
-    555, 657, 660, 560, 0.2, 0.7};
-const ::frc971::constants::ShifterHallEffect kDrivetrainLeftShifter{
-    555, 660, 644, 552, 0.2, 0.7};
-// End constants
-
-class DrivetrainLoop
-    : public aos::controls::ControlLoop<control_loops::DrivetrainQueue> {
- public:
-  // Constructs a control loop which can take a Drivetrain or defaults to the
-  // drivetrain at y2014_bot3::control_loops::drivetrain
-  explicit DrivetrainLoop(control_loops::DrivetrainQueue *my_drivetrain =
-                              &control_loops::drivetrain_queue)
-      : aos::controls::ControlLoop<control_loops::DrivetrainQueue>(
-            my_drivetrain) {
-    ::aos::controls::HPolytope<0>::Init();
-  }
-
- protected:
-  // Executes one cycle of the control loop.
-  virtual void RunIteration(
-      const control_loops::DrivetrainQueue::Goal *goal,
-      const control_loops::DrivetrainQueue::Position *position,
-      control_loops::DrivetrainQueue::Output *output,
-      control_loops::DrivetrainQueue::Status *status);
-
-  typedef ::aos::util::SimpleLogInterval SimpleLogInterval;
-  SimpleLogInterval no_position_ = SimpleLogInterval(
-      ::aos::time::Time::InSeconds(0.25), WARNING, "no position");
-};
-
-}  // namespace control_loops
-}  // namespace y2014_bot3
-
-#endif  // Y2014_BOT3_CONTROL_LOOPS_DRIVETRAIN_H_
diff --git a/y2014_bot3/control_loops/drivetrain/drivetrain.q b/y2014_bot3/control_loops/drivetrain/drivetrain.q
deleted file mode 100644
index 1b97f81..0000000
--- a/y2014_bot3/control_loops/drivetrain/drivetrain.q
+++ /dev/null
@@ -1,104 +0,0 @@
-package y2014_bot3.control_loops;
-
-import "aos/common/controls/control_loops.q";
-
-// For logging information about the state of the shifters.
-struct CIMLogging {
-  // Whether the code thinks the left side is currently in gear.
-  bool left_in_gear;
-  // Whether the code thinks the right side is currently in gear.
-  bool right_in_gear;
-  // The velocity in rad/s (positive forward) the code thinks the left motor
-  // is currently spinning at.
-  double left_motor_speed;
-  // The velocity in rad/s (positive forward) the code thinks the right motor
-  // is currently spinning at.
-  double right_motor_speed;
-  // The velocity estimate for the left side of the robot in m/s (positive
-  // forward) used for shifting.
-  double left_velocity;
-  // The velocity estimate for the right side of the robot in m/s (positive
-  // forward) used for shifting.
-  double right_velocity;
-};
-
-queue_group DrivetrainQueue {
-  implements aos.control_loops.ControlLoop;
-
-  message Goal {
-    // Position of the steering wheel (positive = turning left when going
-    // forwards).
-    double steering;
-    // Position of the throttle (positive forwards).
-    double throttle;
-    // True to shift into high, false to shift into low.
-    bool highgear;
-    // True to activate quickturn.
-    bool quickturn;
-    // True to have the closed-loop controller take over.
-    bool control_loop_driving;
-    // Position goal for the left side in meters when the closed-loop controller
-    // is active.
-    double left_goal;
-    // Velocity goal for the left side in m/s when the closed-loop controller
-    // is active.
-    double left_velocity_goal;
-    // Position goal for the right side in meters when the closed-loop
-    // controller is active.
-    double right_goal;
-    // Velocity goal for the right side in m/s when the closed-loop controller
-    // is active.
-    double right_velocity_goal;
-  };
-
-  message Position {
-    // Relative position of the left side in meters.
-    double left_encoder;
-    // Relative position of the right side in meters.
-    double right_encoder;
-    // The speed in m/s of the left side from the most recent encoder pulse,
-    // or 0 if there was no edge within the last 5ms.
-    double left_speed;
-    // The speed in m/s of the right side from the most recent encoder pulse,
-    // or 0 if there was no edge within the last 5ms.
-    double right_speed;
-  };
-
-  message Output {
-    // Voltage to send to the left motor(s).
-    double left_voltage;
-    // Voltage to send to the right motor(s).
-    double right_voltage;
-    // True to set the left shifter piston for high gear.
-    bool left_high;
-    // True to set the right shifter piston for high gear.
-    bool right_high;
-  };
-
-  message Status {
-    // Estimated speed of the center of the robot in m/s (positive forwards).
-    double robot_speed;
-    // Estimated relative position of the left side in meters.
-    double estimated_left_position;
-    // Estimated relative position of the right side in meters.
-    double estimated_right_position;
-    // Estimated velocity of the left side in m/s.
-    double estimated_left_velocity;
-    // Estimated velocity of the right side in m/s.
-    double estimated_right_velocity;
-
-    // The voltage we wanted to send to the left side last cycle.
-    double uncapped_left_voltage;
-    // The voltage we wanted to send to the right side last cycle.
-    double uncapped_right_voltage;
-    // True if the output voltage was capped last cycle.
-    bool output_was_capped;
-  };
-
-  queue Goal goal;
-  queue Position position;
-  queue Output output;
-  queue Status status;
-};
-
-queue_group DrivetrainQueue drivetrain_queue;
diff --git a/y2014_bot3/control_loops/drivetrain/drivetrain_base.cc b/y2014_bot3/control_loops/drivetrain/drivetrain_base.cc
new file mode 100644
index 0000000..bca3f24
--- /dev/null
+++ b/y2014_bot3/control_loops/drivetrain/drivetrain_base.cc
@@ -0,0 +1,47 @@
+#include "y2014_bot3/control_loops/drivetrain/drivetrain_base.h"
+
+#include "frc971/control_loops/drivetrain/drivetrain_config.h"
+
+#include "frc971/control_loops/state_feedback_loop.h"
+#include "y2014_bot3/control_loops/drivetrain/drivetrain_dog_motor_plant.h"
+#include "y2014_bot3/control_loops/drivetrain/polydrivetrain_dog_motor_plant.h"
+#include "y2014_bot3/control_loops/drivetrain/kalman_drivetrain_motor_plant.h"
+
+using ::frc971::control_loops::drivetrain::DrivetrainConfig;
+
+namespace y2014_bot3 {
+namespace control_loops {
+namespace drivetrain {
+
+using ::frc971::constants::ShifterHallEffect;
+
+const ShifterHallEffect kThreeStateDriveShifter{0.0, 0.0, 0.0, 0.0, 0.25, 0.75};
+
+const DrivetrainConfig &GetDrivetrainConfig() {
+  static DrivetrainConfig kDrivetrainConfig{
+      ::frc971::control_loops::drivetrain::ShifterType::SIMPLE_SHIFTER,
+      ::frc971::control_loops::drivetrain::LoopType::OPEN_LOOP,
+
+      ::y2014_bot3::control_loops::drivetrain::MakeDrivetrainLoop,
+      ::y2014_bot3::control_loops::drivetrain::MakeVelocityDrivetrainLoop,
+      ::y2014_bot3::control_loops::drivetrain::MakeKFDrivetrainLoop,
+
+      drivetrain::kDt,
+      drivetrain::kRobotRadius,
+      drivetrain::kWheelRadius,
+      drivetrain::kV,
+
+      drivetrain::kHighGearRatio,
+      drivetrain::kLowGearRatio,
+
+      // No shifter sensors, so we could put anything for the things below.
+      kThreeStateDriveShifter,
+      kThreeStateDriveShifter,
+      false};
+
+  return kDrivetrainConfig;
+};
+
+}  // namespace drivetrain
+}  // namespace control_loops
+}  // namespace y2014_bot3
diff --git a/y2014_bot3/control_loops/drivetrain/drivetrain_base.h b/y2014_bot3/control_loops/drivetrain/drivetrain_base.h
new file mode 100644
index 0000000..d2e54f9
--- /dev/null
+++ b/y2014_bot3/control_loops/drivetrain/drivetrain_base.h
@@ -0,0 +1,20 @@
+#ifndef Y2014_BOT3_CONTROL_LOOPS_DRIVETRAIN_DRIVETRAIN_BASE_H_
+#define Y2014_BOT3_CONTROL_LOOPS_DRIVETRAIN_DRIVETRAIN_BASE_H_
+
+#include "frc971/control_loops/drivetrain/drivetrain_config.h"
+
+namespace y2014_bot3 {
+namespace control_loops {
+namespace drivetrain {
+
+const double kDrivetrainEncoderRatio =
+    (17.0 / 50.0) /*output reduction*/ * (24.0 / 64.0) /*encoder gears*/;
+
+const ::frc971::control_loops::drivetrain::DrivetrainConfig &
+GetDrivetrainConfig();
+
+}  // namespace drivetrain
+}  // namespace control_loops
+}  // namespace y2014_bot3
+
+#endif  // Y2014_BOT3_CONTROL_LOOPS_DRIVETRAIN_DRIVETRAIN_BASE_H_
diff --git a/y2014_bot3/control_loops/drivetrain/drivetrain_constants.h b/y2014_bot3/control_loops/drivetrain/drivetrain_constants.h
deleted file mode 100644
index 28848b0..0000000
--- a/y2014_bot3/control_loops/drivetrain/drivetrain_constants.h
+++ /dev/null
@@ -1,26 +0,0 @@
-#ifndef BOT3_CONTROL_LOOPS_DRIVETRAIN_CONSTANTS_H_
-#define BOT3_CONTROL_LOOPS_DRIVETRAIN_CONSTANTS_H_
-
-#include "bot3/shifter_hall_effect.h"
-
-namespace bot3 {
-namespace control_loops {
-
-constexpr constants::ShifterHallEffect kBot3LeftDriveShifter =
-    {426, 171, 0.6, 0.47};
-constexpr constants::ShifterHallEffect kBot3RightDriveShifter =
-    {424, 172, 0.62, 0.55};
-
-constexpr double kBot3TurnWidth = 0.5;
-constexpr double kBot3DrivetrainDoneDistance = 0.02;
-
-constexpr double kBot3LowGearRatio = 14.0 / 60.0 * 17.0 / 50.0;
-constexpr double kBot3HighGearRatio = 30.0 / 44.0 * 17.0 / 50.0;
-
-// If this is true, we don't use the analog hall effects for shifting.
-constexpr bool kBot3SimpleShifting = true;
-
-}  // control_loops
-}  // bot3
-
-#endif
diff --git a/y2014_bot3/control_loops/drivetrain/drivetrain_lib_test.cc b/y2014_bot3/control_loops/drivetrain/drivetrain_lib_test.cc
deleted file mode 100644
index 3953951..0000000
--- a/y2014_bot3/control_loops/drivetrain/drivetrain_lib_test.cc
+++ /dev/null
@@ -1,295 +0,0 @@
-#include <unistd.h>
-
-#include <memory>
-
-#include "gtest/gtest.h"
-#include "aos/common/network/team_number.h"
-#include "aos/common/controls/polytope.h"
-#include "aos/common/controls/control_loop_test.h"
-
-#include "y2014_bot3/control_loops/drivetrain/drivetrain.q.h"
-#include "y2014_bot3/control_loops/drivetrain/drivetrain.h"
-#include "frc971/control_loops/state_feedback_loop.h"
-#include "frc971/control_loops/coerce_goal.h"
-#include "y2014_bot3/control_loops/drivetrain/drivetrain_dog_motor_plant.h"
-#include "frc971/queues/gyro.q.h"
-
-namespace y2014_bot3 {
-namespace control_loops {
-namespace testing {
-
-class Environment : public ::testing::Environment {
- public:
-  virtual ~Environment() {}
-  // how to set up the environment.
-  virtual void SetUp() {
-    aos::controls::HPolytope<0>::Init();
-  }
-};
-::testing::Environment* const holder_env =
-  ::testing::AddGlobalTestEnvironment(new Environment);
-
-class TeamNumberEnvironment : public ::testing::Environment {
- public:
-  // Override this to define how to set up the environment.
-  virtual void SetUp() { aos::network::OverrideTeamNumber(971); }
-};
-
-::testing::Environment* const team_number_env =
-    ::testing::AddGlobalTestEnvironment(new TeamNumberEnvironment);
-
-// Class which simulates the drivetrain and sends out queue messages containing
-// the position.
-class DrivetrainSimulation {
- public:
-  // Constructs a motor simulation.
-  // TODO(aschuh) Do we want to test the clutch one too?
-  DrivetrainSimulation()
-      : drivetrain_plant_(
-            new StateFeedbackPlant<4, 2, 2>(drivetrain::MakeDrivetrainPlant())),
-        my_drivetrain_queue_(".y2014_bot3.control_loops.drivetrain",
-                       0x8a8dde77, ".y2014_bot3.control_loops.drivetrain.goal",
-                       ".y2014_bot3.control_loops.drivetrain.position",
-                       ".y2014_bot3.control_loops.drivetrain.output",
-                       ".y2014_bot3.control_loops.drivetrain.status") {
-    Reinitialize();
-  }
-
-  // Resets the plant.
-  void Reinitialize() {
-    drivetrain_plant_->mutable_X(0, 0) = 0.0;
-    drivetrain_plant_->mutable_X(1, 0) = 0.0;
-    drivetrain_plant_->mutable_Y() =
-        drivetrain_plant_->C() * drivetrain_plant_->X();
-    last_left_position_ = drivetrain_plant_->Y(0, 0);
-    last_right_position_ = drivetrain_plant_->Y(1, 0);
-  }
-
-  // Returns the position of the drivetrain.
-  double GetLeftPosition() const { return drivetrain_plant_->Y(0, 0); }
-  double GetRightPosition() const { return drivetrain_plant_->Y(1, 0); }
-
-  // Sends out the position queue messages.
-  void SendPositionMessage() {
-    const double left_encoder = GetLeftPosition();
-    const double right_encoder = GetRightPosition();
-
-    ::aos::ScopedMessagePtr<control_loops::DrivetrainQueue::Position> position =
-        my_drivetrain_queue_.position.MakeMessage();
-    position->left_encoder = left_encoder;
-    position->right_encoder = right_encoder;
-    position.Send();
-  }
-
-  // Simulates the drivetrain moving for one timestep.
-  void Simulate() {
-    last_left_position_ = drivetrain_plant_->Y(0, 0);
-    last_right_position_ = drivetrain_plant_->Y(1, 0);
-    EXPECT_TRUE(my_drivetrain_queue_.output.FetchLatest());
-    drivetrain_plant_->mutable_U() << my_drivetrain_queue_.output->left_voltage,
-        my_drivetrain_queue_.output->right_voltage;
-    drivetrain_plant_->Update();
-  }
-
-  ::std::unique_ptr<StateFeedbackPlant<4, 2, 2>> drivetrain_plant_;
- private:
-  DrivetrainQueue my_drivetrain_queue_;
-  double last_left_position_;
-  double last_right_position_;
-};
-
-class DrivetrainTest : public ::aos::testing::ControlLoopTest {
- protected:
-  // Create a new instance of the test queue so that it invalidates the queue
-  // that it points to.  Otherwise, we will have a pointer to shared memory that
-  // is no longer valid.
-  DrivetrainQueue my_drivetrain_queue_;
-
-  // Create a loop and simulation plant.
-  DrivetrainLoop drivetrain_motor_;
-  DrivetrainSimulation drivetrain_motor_plant_;
-
-  DrivetrainTest() : my_drivetrain_queue_(".y2014_bot3.control_loops.drivetrain",
-                               0x8a8dde77,
-                               ".y2014_bot3.control_loops.drivetrain.goal",
-                               ".y2014_bot3.control_loops.drivetrain.position",
-                               ".y2014_bot3.control_loops.drivetrain.output",
-                               ".y2014_bot3.control_loops.drivetrain.status"),
-                drivetrain_motor_(&my_drivetrain_queue_),
-                drivetrain_motor_plant_() {
-    ::frc971::sensors::gyro_reading.Clear();
-  }
-
-  void VerifyNearGoal() {
-    my_drivetrain_queue_.goal.FetchLatest();
-    my_drivetrain_queue_.position.FetchLatest();
-    EXPECT_NEAR(my_drivetrain_queue_.goal->left_goal,
-                drivetrain_motor_plant_.GetLeftPosition(),
-                1e-2);
-    EXPECT_NEAR(my_drivetrain_queue_.goal->right_goal,
-                drivetrain_motor_plant_.GetRightPosition(),
-                1e-2);
-  }
-
-  virtual ~DrivetrainTest() {
-    ::frc971::sensors::gyro_reading.Clear();
-  }
-};
-
-// Tests that the drivetrain converges on a goal.
-TEST_F(DrivetrainTest, ConvergesCorrectly) {
-  my_drivetrain_queue_.goal.MakeWithBuilder().control_loop_driving(true)
-      .left_goal(-1.0)
-      .right_goal(1.0).Send();
-  for (int i = 0; i < 200; ++i) {
-    drivetrain_motor_plant_.SendPositionMessage();
-    drivetrain_motor_.Iterate();
-    drivetrain_motor_plant_.Simulate();
-    SimulateTimestep(true);
-  }
-  VerifyNearGoal();
-}
-
-// Tests that it survives disabling.
-TEST_F(DrivetrainTest, SurvivesDisabling) {
-  my_drivetrain_queue_.goal.MakeWithBuilder().control_loop_driving(true)
-      .left_goal(-1.0)
-      .right_goal(1.0).Send();
-  for (int i = 0; i < 500; ++i) {
-    drivetrain_motor_plant_.SendPositionMessage();
-    drivetrain_motor_.Iterate();
-    drivetrain_motor_plant_.Simulate();
-    if (i > 20 && i < 200) {
-      SimulateTimestep(false);
-    } else {
-      SimulateTimestep(true);
-    }
-  }
-  VerifyNearGoal();
-}
-
-// Tests that never having a goal doesn't break.
-TEST_F(DrivetrainTest, NoGoalStart) {
-  for (int i = 0; i < 20; ++i) {
-    drivetrain_motor_plant_.SendPositionMessage();
-    drivetrain_motor_.Iterate();
-    drivetrain_motor_plant_.Simulate();
-  }
-}
-
-// Tests that never having a goal, but having driver's station messages, doesn't
-// break.
-TEST_F(DrivetrainTest, NoGoalWithRobotState) {
-  for (int i = 0; i < 20; ++i) {
-    drivetrain_motor_plant_.SendPositionMessage();
-    drivetrain_motor_.Iterate();
-    drivetrain_motor_plant_.Simulate();
-    SimulateTimestep(true);
-  }
-}
-
-::aos::controls::HPolytope<2> MakeBox(double x1_min, double x1_max,
-                                      double x2_min, double x2_max) {
-  Eigen::Matrix<double, 4, 2> box_H;
-  box_H << /*[[*/ 1.0, 0.0 /*]*/,
-            /*[*/-1.0, 0.0 /*]*/,
-            /*[*/ 0.0, 1.0 /*]*/,
-            /*[*/ 0.0,-1.0 /*]]*/;
-  Eigen::Matrix<double, 4, 1> box_k;
-  box_k << /*[[*/ x1_max /*]*/,
-            /*[*/-x1_min /*]*/,
-            /*[*/ x2_max /*]*/,
-            /*[*/-x2_min /*]]*/;
-  ::aos::controls::HPolytope<2> t_poly(box_H, box_k);
-  return t_poly;
-}
-
-class CoerceGoalTest : public ::testing::Test {
- public:
-  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
-};
-
-// WHOOOHH!
-TEST_F(CoerceGoalTest, Inside) {
-  ::aos::controls::HPolytope<2> box = MakeBox(1, 2, 1, 2);
-
-  Eigen::Matrix<double, 1, 2> K;
-  K << /*[[*/ 1, -1 /*]]*/;
-
-  Eigen::Matrix<double, 2, 1> R;
-  R << /*[[*/ 1.5, 1.5 /*]]*/;
-
-  Eigen::Matrix<double, 2, 1> output =
-      ::frc971::control_loops::CoerceGoal(box, K, 0, R);
-
-  EXPECT_EQ(R(0, 0), output(0, 0));
-  EXPECT_EQ(R(1, 0), output(1, 0));
-}
-
-TEST_F(CoerceGoalTest, Outside_Inside_Intersect) {
-  ::aos::controls::HPolytope<2> box = MakeBox(1, 2, 1, 2);
-
-  Eigen::Matrix<double, 1, 2> K;
-  K << 1, -1;
-
-  Eigen::Matrix<double, 2, 1> R;
-  R << 5, 5;
-
-  Eigen::Matrix<double, 2, 1> output =
-      ::frc971::control_loops::CoerceGoal(box, K, 0, R);
-
-  EXPECT_EQ(2.0, output(0, 0));
-  EXPECT_EQ(2.0, output(1, 0));
-}
-
-TEST_F(CoerceGoalTest, Outside_Inside_no_Intersect) {
-  ::aos::controls::HPolytope<2> box = MakeBox(3, 4, 1, 2);
-
-  Eigen::Matrix<double, 1, 2> K;
-  K << 1, -1;
-
-  Eigen::Matrix<double, 2, 1> R;
-  R << 5, 5;
-
-  Eigen::Matrix<double, 2, 1> output =
-      ::frc971::control_loops::CoerceGoal(box, K, 0, R);
-
-  EXPECT_EQ(3.0, output(0, 0));
-  EXPECT_EQ(2.0, output(1, 0));
-}
-
-TEST_F(CoerceGoalTest, Middle_Of_Edge) {
-  ::aos::controls::HPolytope<2> box = MakeBox(0, 4, 1, 2);
-
-  Eigen::Matrix<double, 1, 2> K;
-  K << -1, 1;
-
-  Eigen::Matrix<double, 2, 1> R;
-  R << 5, 5;
-
-  Eigen::Matrix<double, 2, 1> output =
-      ::frc971::control_loops::CoerceGoal(box, K, 0, R);
-
-  EXPECT_EQ(2.0, output(0, 0));
-  EXPECT_EQ(2.0, output(1, 0));
-}
-
-TEST_F(CoerceGoalTest, PerpendicularLine) {
-  ::aos::controls::HPolytope<2> box = MakeBox(1, 2, 1, 2);
-
-  Eigen::Matrix<double, 1, 2> K;
-  K << 1, 1;
-
-  Eigen::Matrix<double, 2, 1> R;
-  R << 5, 5;
-
-  Eigen::Matrix<double, 2, 1> output =
-      ::frc971::control_loops::CoerceGoal(box, K, 0, R);
-
-  EXPECT_EQ(1.0, output(0, 0));
-  EXPECT_EQ(1.0, output(1, 0));
-}
-
-}  // namespace testing
-}  // namespace control_loops
-}  // namespace y2014_bot3
diff --git a/y2014_bot3/control_loops/drivetrain/drivetrain_main.cc b/y2014_bot3/control_loops/drivetrain/drivetrain_main.cc
index 588bc89..a0f0a83 100644
--- a/y2014_bot3/control_loops/drivetrain/drivetrain_main.cc
+++ b/y2014_bot3/control_loops/drivetrain/drivetrain_main.cc
@@ -1,10 +1,14 @@
-#include "y2014_bot3/control_loops/drivetrain/drivetrain.h"
-
 #include "aos/linux_code/init.h"
 
+#include "frc971/control_loops/drivetrain/drivetrain.h"
+#include "y2014_bot3/control_loops/drivetrain/drivetrain_base.h"
+
+using ::frc971::control_loops::drivetrain::DrivetrainLoop;
+
 int main() {
   ::aos::Init();
-  y2014_bot3::control_loops::DrivetrainLoop drivetrain;
+  DrivetrainLoop drivetrain(
+      ::y2014_bot3::control_loops::drivetrain::GetDrivetrainConfig());
   drivetrain.Run();
   ::aos::Cleanup();
   return 0;
diff --git a/y2014_bot3/control_loops/drivetrain/polydrivetrain_cim_plant.cc b/y2014_bot3/control_loops/drivetrain/polydrivetrain_cim_plant.cc
deleted file mode 100644
index 75bae13..0000000
--- a/y2014_bot3/control_loops/drivetrain/polydrivetrain_cim_plant.cc
+++ /dev/null
@@ -1,49 +0,0 @@
-#include "y2014_bot3/control_loops/drivetrain/polydrivetrain_cim_plant.h"
-
-#include <vector>
-
-#include "frc971/control_loops/state_feedback_loop.h"
-
-namespace y2014_bot3 {
-namespace control_loops {
-
-StateFeedbackPlantCoefficients<1, 1, 1> MakeCIMPlantCoefficients() {
-  Eigen::Matrix<double, 1, 1> A;
-  A << 0.783924473544;
-  Eigen::Matrix<double, 1, 1> B;
-  B << 8.94979586973;
-  Eigen::Matrix<double, 1, 1> C;
-  C << 1;
-  Eigen::Matrix<double, 1, 1> D;
-  D << 0;
-  Eigen::Matrix<double, 1, 1> U_max;
-  U_max << 12.0;
-  Eigen::Matrix<double, 1, 1> U_min;
-  U_min << -12.0;
-  return StateFeedbackPlantCoefficients<1, 1, 1>(A, B, C, D, U_max, U_min);
-}
-
-StateFeedbackController<1, 1, 1> MakeCIMController() {
-  Eigen::Matrix<double, 1, 1> L;
-  L << 0.773924473544;
-  Eigen::Matrix<double, 1, 1> K;
-  K << 0.086473980503;
-  Eigen::Matrix<double, 1, 1> A_inv;
-  A_inv << 1.2756330919;
-  return StateFeedbackController<1, 1, 1>(L, K, A_inv, MakeCIMPlantCoefficients());
-}
-
-StateFeedbackPlant<1, 1, 1> MakeCIMPlant() {
-  ::std::vector< ::std::unique_ptr<StateFeedbackPlantCoefficients<1, 1, 1>>> plants(1);
-  plants[0] = ::std::unique_ptr<StateFeedbackPlantCoefficients<1, 1, 1>>(new StateFeedbackPlantCoefficients<1, 1, 1>(MakeCIMPlantCoefficients()));
-  return StateFeedbackPlant<1, 1, 1>(&plants);
-}
-
-StateFeedbackLoop<1, 1, 1> MakeCIMLoop() {
-  ::std::vector< ::std::unique_ptr<StateFeedbackController<1, 1, 1>>> controllers(1);
-  controllers[0] = ::std::unique_ptr<StateFeedbackController<1, 1, 1>>(new StateFeedbackController<1, 1, 1>(MakeCIMController()));
-  return StateFeedbackLoop<1, 1, 1>(&controllers);
-}
-
-}  // namespace control_loops
-}  // namespace y2014_bot3
diff --git a/y2014_bot3/control_loops/drivetrain/polydrivetrain_cim_plant.h b/y2014_bot3/control_loops/drivetrain/polydrivetrain_cim_plant.h
deleted file mode 100644
index 0def071..0000000
--- a/y2014_bot3/control_loops/drivetrain/polydrivetrain_cim_plant.h
+++ /dev/null
@@ -1,20 +0,0 @@
-#ifndef Y2014_BOT3_CONTROL_LOOPS_DRIVETRAIN_POLYDRIVETRAIN_CIM_PLANT_H_
-#define Y2014_BOT3_CONTROL_LOOPS_DRIVETRAIN_POLYDRIVETRAIN_CIM_PLANT_H_
-
-#include "frc971/control_loops/state_feedback_loop.h"
-
-namespace y2014_bot3 {
-namespace control_loops {
-
-StateFeedbackPlantCoefficients<1, 1, 1> MakeCIMPlantCoefficients();
-
-StateFeedbackController<1, 1, 1> MakeCIMController();
-
-StateFeedbackPlant<1, 1, 1> MakeCIMPlant();
-
-StateFeedbackLoop<1, 1, 1> MakeCIMLoop();
-
-}  // namespace control_loops
-}  // namespace y2014_bot3
-
-#endif  // Y2014_BOT3_CONTROL_LOOPS_DRIVETRAIN_POLYDRIVETRAIN_CIM_PLANT_H_
diff --git a/y2014_bot3/control_loops/drivetrain/polydrivetrain_dog_motor_plant.cc b/y2014_bot3/control_loops/drivetrain/polydrivetrain_dog_motor_plant.cc
deleted file mode 100644
index 8fc4049..0000000
--- a/y2014_bot3/control_loops/drivetrain/polydrivetrain_dog_motor_plant.cc
+++ /dev/null
@@ -1,133 +0,0 @@
-#include "y2014_bot3/control_loops/drivetrain/polydrivetrain_dog_motor_plant.h"
-
-#include <vector>
-
-#include "frc971/control_loops/state_feedback_loop.h"
-
-namespace y2014_bot3 {
-namespace control_loops {
-
-StateFeedbackPlantCoefficients<2, 2, 2> MakeVelocityDrivetrainLowLowPlantCoefficients() {
-  Eigen::Matrix<double, 2, 2> A;
-  A << 0.953388055571, 0.0100729449137, 0.0100729449137, 0.953388055571;
-  Eigen::Matrix<double, 2, 2> B;
-  B << 0.0119133285199, -0.00257449680311, -0.00257449680311, 0.0119133285199;
-  Eigen::Matrix<double, 2, 2> C;
-  C << 1.0, 0.0, 0.0, 1.0;
-  Eigen::Matrix<double, 2, 2> D;
-  D << 0.0, 0.0, 0.0, 0.0;
-  Eigen::Matrix<double, 2, 1> U_max;
-  U_max << 12.0, 12.0;
-  Eigen::Matrix<double, 2, 1> U_min;
-  U_min << -12.0, -12.0;
-  return StateFeedbackPlantCoefficients<2, 2, 2>(A, B, C, D, U_max, U_min);
-}
-
-StateFeedbackPlantCoefficients<2, 2, 2> MakeVelocityDrivetrainLowHighPlantCoefficients() {
-  Eigen::Matrix<double, 2, 2> A;
-  A << 0.953388055571, 0.0100729449137, 0.0100729449137, 0.953388055571;
-  Eigen::Matrix<double, 2, 2> B;
-  B << 0.0119133285199, -0.00257449680311, -0.00257449680311, 0.0119133285199;
-  Eigen::Matrix<double, 2, 2> C;
-  C << 1.0, 0.0, 0.0, 1.0;
-  Eigen::Matrix<double, 2, 2> D;
-  D << 0.0, 0.0, 0.0, 0.0;
-  Eigen::Matrix<double, 2, 1> U_max;
-  U_max << 12.0, 12.0;
-  Eigen::Matrix<double, 2, 1> U_min;
-  U_min << -12.0, -12.0;
-  return StateFeedbackPlantCoefficients<2, 2, 2>(A, B, C, D, U_max, U_min);
-}
-
-StateFeedbackPlantCoefficients<2, 2, 2> MakeVelocityDrivetrainHighLowPlantCoefficients() {
-  Eigen::Matrix<double, 2, 2> A;
-  A << 0.953388055571, 0.0100729449137, 0.0100729449137, 0.953388055571;
-  Eigen::Matrix<double, 2, 2> B;
-  B << 0.0119133285199, -0.00257449680311, -0.00257449680311, 0.0119133285199;
-  Eigen::Matrix<double, 2, 2> C;
-  C << 1.0, 0.0, 0.0, 1.0;
-  Eigen::Matrix<double, 2, 2> D;
-  D << 0.0, 0.0, 0.0, 0.0;
-  Eigen::Matrix<double, 2, 1> U_max;
-  U_max << 12.0, 12.0;
-  Eigen::Matrix<double, 2, 1> U_min;
-  U_min << -12.0, -12.0;
-  return StateFeedbackPlantCoefficients<2, 2, 2>(A, B, C, D, U_max, U_min);
-}
-
-StateFeedbackPlantCoefficients<2, 2, 2> MakeVelocityDrivetrainHighHighPlantCoefficients() {
-  Eigen::Matrix<double, 2, 2> A;
-  A << 0.953388055571, 0.0100729449137, 0.0100729449137, 0.953388055571;
-  Eigen::Matrix<double, 2, 2> B;
-  B << 0.0119133285199, -0.00257449680311, -0.00257449680311, 0.0119133285199;
-  Eigen::Matrix<double, 2, 2> C;
-  C << 1.0, 0.0, 0.0, 1.0;
-  Eigen::Matrix<double, 2, 2> D;
-  D << 0.0, 0.0, 0.0, 0.0;
-  Eigen::Matrix<double, 2, 1> U_max;
-  U_max << 12.0, 12.0;
-  Eigen::Matrix<double, 2, 1> U_min;
-  U_min << -12.0, -12.0;
-  return StateFeedbackPlantCoefficients<2, 2, 2>(A, B, C, D, U_max, U_min);
-}
-
-StateFeedbackController<2, 2, 2> MakeVelocityDrivetrainLowLowController() {
-  Eigen::Matrix<double, 2, 2> L;
-  L << 0.933388055571, 0.0100729449137, 0.0100729449137, 0.933388055571;
-  Eigen::Matrix<double, 2, 2> K;
-  K << 31.3080614945, 7.61126069778, 7.61126069778, 31.3080614945;
-  Eigen::Matrix<double, 2, 2> A_inv;
-  A_inv << 1.04900794038, -0.0110832091253, -0.0110832091253, 1.04900794038;
-  return StateFeedbackController<2, 2, 2>(L, K, A_inv, MakeVelocityDrivetrainLowLowPlantCoefficients());
-}
-
-StateFeedbackController<2, 2, 2> MakeVelocityDrivetrainLowHighController() {
-  Eigen::Matrix<double, 2, 2> L;
-  L << 0.933388055571, 0.0100729449137, 0.0100729449137, 0.933388055571;
-  Eigen::Matrix<double, 2, 2> K;
-  K << 31.3080614945, 7.61126069778, 7.61126069778, 31.3080614945;
-  Eigen::Matrix<double, 2, 2> A_inv;
-  A_inv << 1.04900794038, -0.0110832091253, -0.0110832091253, 1.04900794038;
-  return StateFeedbackController<2, 2, 2>(L, K, A_inv, MakeVelocityDrivetrainLowHighPlantCoefficients());
-}
-
-StateFeedbackController<2, 2, 2> MakeVelocityDrivetrainHighLowController() {
-  Eigen::Matrix<double, 2, 2> L;
-  L << 0.933388055571, 0.0100729449137, 0.0100729449137, 0.933388055571;
-  Eigen::Matrix<double, 2, 2> K;
-  K << 31.3080614945, 7.61126069778, 7.61126069778, 31.3080614945;
-  Eigen::Matrix<double, 2, 2> A_inv;
-  A_inv << 1.04900794038, -0.0110832091253, -0.0110832091253, 1.04900794038;
-  return StateFeedbackController<2, 2, 2>(L, K, A_inv, MakeVelocityDrivetrainHighLowPlantCoefficients());
-}
-
-StateFeedbackController<2, 2, 2> MakeVelocityDrivetrainHighHighController() {
-  Eigen::Matrix<double, 2, 2> L;
-  L << 0.933388055571, 0.0100729449137, 0.0100729449137, 0.933388055571;
-  Eigen::Matrix<double, 2, 2> K;
-  K << 31.3080614945, 7.61126069778, 7.61126069778, 31.3080614945;
-  Eigen::Matrix<double, 2, 2> A_inv;
-  A_inv << 1.04900794038, -0.0110832091253, -0.0110832091253, 1.04900794038;
-  return StateFeedbackController<2, 2, 2>(L, K, A_inv, MakeVelocityDrivetrainHighHighPlantCoefficients());
-}
-
-StateFeedbackPlant<2, 2, 2> MakeVelocityDrivetrainPlant() {
-  ::std::vector< ::std::unique_ptr<StateFeedbackPlantCoefficients<2, 2, 2>>> plants(4);
-  plants[0] = ::std::unique_ptr<StateFeedbackPlantCoefficients<2, 2, 2>>(new StateFeedbackPlantCoefficients<2, 2, 2>(MakeVelocityDrivetrainLowLowPlantCoefficients()));
-  plants[1] = ::std::unique_ptr<StateFeedbackPlantCoefficients<2, 2, 2>>(new StateFeedbackPlantCoefficients<2, 2, 2>(MakeVelocityDrivetrainLowHighPlantCoefficients()));
-  plants[2] = ::std::unique_ptr<StateFeedbackPlantCoefficients<2, 2, 2>>(new StateFeedbackPlantCoefficients<2, 2, 2>(MakeVelocityDrivetrainHighLowPlantCoefficients()));
-  plants[3] = ::std::unique_ptr<StateFeedbackPlantCoefficients<2, 2, 2>>(new StateFeedbackPlantCoefficients<2, 2, 2>(MakeVelocityDrivetrainHighHighPlantCoefficients()));
-  return StateFeedbackPlant<2, 2, 2>(&plants);
-}
-
-StateFeedbackLoop<2, 2, 2> MakeVelocityDrivetrainLoop() {
-  ::std::vector< ::std::unique_ptr<StateFeedbackController<2, 2, 2>>> controllers(4);
-  controllers[0] = ::std::unique_ptr<StateFeedbackController<2, 2, 2>>(new StateFeedbackController<2, 2, 2>(MakeVelocityDrivetrainLowLowController()));
-  controllers[1] = ::std::unique_ptr<StateFeedbackController<2, 2, 2>>(new StateFeedbackController<2, 2, 2>(MakeVelocityDrivetrainLowHighController()));
-  controllers[2] = ::std::unique_ptr<StateFeedbackController<2, 2, 2>>(new StateFeedbackController<2, 2, 2>(MakeVelocityDrivetrainHighLowController()));
-  controllers[3] = ::std::unique_ptr<StateFeedbackController<2, 2, 2>>(new StateFeedbackController<2, 2, 2>(MakeVelocityDrivetrainHighHighController()));
-  return StateFeedbackLoop<2, 2, 2>(&controllers);
-}
-
-}  // namespace control_loops
-}  // namespace y2014_bot3
diff --git a/y2014_bot3/control_loops/drivetrain/polydrivetrain_dog_motor_plant.h b/y2014_bot3/control_loops/drivetrain/polydrivetrain_dog_motor_plant.h
deleted file mode 100644
index 4442d35..0000000
--- a/y2014_bot3/control_loops/drivetrain/polydrivetrain_dog_motor_plant.h
+++ /dev/null
@@ -1,32 +0,0 @@
-#ifndef Y2014_BOT3_CONTROL_LOOPS_DRIVETRAIN_POLYDRIVETRAIN_DOG_MOTOR_PLANT_H_
-#define Y2014_BOT3_CONTROL_LOOPS_DRIVETRAIN_POLYDRIVETRAIN_DOG_MOTOR_PLANT_H_
-
-#include "frc971/control_loops/state_feedback_loop.h"
-
-namespace y2014_bot3 {
-namespace control_loops {
-
-StateFeedbackPlantCoefficients<2, 2, 2> MakeVelocityDrivetrainLowLowPlantCoefficients();
-
-StateFeedbackController<2, 2, 2> MakeVelocityDrivetrainLowLowController();
-
-StateFeedbackPlantCoefficients<2, 2, 2> MakeVelocityDrivetrainLowHighPlantCoefficients();
-
-StateFeedbackController<2, 2, 2> MakeVelocityDrivetrainLowHighController();
-
-StateFeedbackPlantCoefficients<2, 2, 2> MakeVelocityDrivetrainHighLowPlantCoefficients();
-
-StateFeedbackController<2, 2, 2> MakeVelocityDrivetrainHighLowController();
-
-StateFeedbackPlantCoefficients<2, 2, 2> MakeVelocityDrivetrainHighHighPlantCoefficients();
-
-StateFeedbackController<2, 2, 2> MakeVelocityDrivetrainHighHighController();
-
-StateFeedbackPlant<2, 2, 2> MakeVelocityDrivetrainPlant();
-
-StateFeedbackLoop<2, 2, 2> MakeVelocityDrivetrainLoop();
-
-}  // namespace control_loops
-}  // namespace y2014_bot3
-
-#endif  // Y2014_BOT3_CONTROL_LOOPS_DRIVETRAIN_POLYDRIVETRAIN_DOG_MOTOR_PLANT_H_
diff --git a/y2014_bot3/control_loops/drivetrain/replay_drivetrain.cc b/y2014_bot3/control_loops/drivetrain/replay_drivetrain.cc
deleted file mode 100644
index 4f83c9e..0000000
--- a/y2014_bot3/control_loops/drivetrain/replay_drivetrain.cc
+++ /dev/null
@@ -1,24 +0,0 @@
-#include "aos/common/controls/replay_control_loop.h"
-#include "aos/linux_code/init.h"
-
-#include "y2014_bot3/control_loops/drivetrain/drivetrain.q.h"
-
-// Reads one or more log files and sends out all the queue messages (in the
-// correct order and at the correct time) to feed a "live" drivetrain process.
-
-int main(int argc, char **argv) {
-  if (argc <= 1) {
-    fprintf(stderr, "Need at least one file to replay!\n");
-    return EXIT_FAILURE;
-  }
-
-  ::aos::InitNRT();
-
-  ::aos::controls::ControlLoopReplayer<::y2014_bot3::control_loops::DrivetrainQueue>
-      replayer(&::y2014_bot3::control_loops::drivetrain_queue, "drivetrain");
-  for (int i = 1; i < argc; ++i) {
-    replayer.ProcessFile(argv[i]);
-  }
-
-  ::aos::Cleanup();
-}
diff --git a/y2014_bot3/control_loops/python/BUILD b/y2014_bot3/control_loops/python/BUILD
index bb8dc29..756b60e 100644
--- a/y2014_bot3/control_loops/python/BUILD
+++ b/y2014_bot3/control_loops/python/BUILD
@@ -6,7 +6,21 @@
     'drivetrain.py',
   ],
   deps = [
+    '//external:python-gflags',
     '//external:python-glog',
     '//frc971/control_loops/python:controls',
   ]
 )
+
+py_binary(
+  name = 'polydrivetrain',
+  srcs = [
+    'polydrivetrain.py',
+    'drivetrain.py',
+  ],
+  deps = [
+    '//external:python-gflags',
+    '//external:python-glog',
+    '//frc971/control_loops/python:controls',
+  ],
+)
diff --git a/y2014_bot3/control_loops/python/drivetrain.py b/y2014_bot3/control_loops/python/drivetrain.py
index 4231887..b0555a0 100755
--- a/y2014_bot3/control_loops/python/drivetrain.py
+++ b/y2014_bot3/control_loops/python/drivetrain.py
@@ -4,10 +4,16 @@
 from frc971.control_loops.python import controls
 import numpy
 import sys
+import argparse
 from matplotlib import pylab
 
+import gflags
 import glog
 
+FLAGS = gflags.FLAGS
+
+gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+
 class CIM(control_loop.ControlLoop):
   def __init__(self):
     super(CIM, self).__init__("CIM")
@@ -22,10 +28,10 @@
     # Moment of inertia of the CIM in kg m^2
     self.J = 0.0001
     # Resistance of the motor, divided by 2 to account for the 2 motors
-    self.R = 12.0 / self.stall_current
+    self.resistance = 12.0 / self.stall_current
     # Motor velocity constant
     self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
-              (12.0 - self.R * self.free_current))
+              (12.0 - self.resistance * self.free_current))
     # Torque constant
     self.Kt = self.stall_torque / self.stall_current
     # Control loop time step
@@ -33,9 +39,9 @@
 
     # State feedback matrices
     self.A_continuous = numpy.matrix(
-        [[-self.Kt / self.Kv / (self.J * self.R)]])
+        [[-self.Kt / self.Kv / (self.J * self.resistance)]])
     self.B_continuous = numpy.matrix(
-        [[self.Kt / (self.J * self.R)]])
+        [[self.Kt / (self.J * self.resistance)]])
     self.C = numpy.matrix([[1]])
     self.D = numpy.matrix([[0]])
 
@@ -54,36 +60,34 @@
 class Drivetrain(control_loop.ControlLoop):
   def __init__(self, name="Drivetrain", left_low=True, right_low=True):
     super(Drivetrain, self).__init__(name)
+    # Number of motors per side
+    self.num_motors = 2
     # Stall Torque in N m
-    self.stall_torque = 2.42
+    self.stall_torque = 2.42 * self.num_motors * 0.60
     # Stall Current in Amps
-    self.stall_current = 133.0
+    self.stall_current = 133.0 * self.num_motors
     # Free Speed in RPM. Used number from last year.
-    self.free_speed = 4650.0
+    self.free_speed = 5500.0
     # Free Current in Amps
-    self.free_current = 2.7
+    self.free_current = 4.7 * self.num_motors
     # Moment of inertia of the drivetrain in kg m^2
-    # Just borrowed from last year.
-    self.J = 10
+    self.J = 1.8
     # Mass of the robot, in kg.
-    self.m = 68
-    # Radius of the robot, in meters (from last year).
-    self.rb = 0.9603 / 2.0
+    self.m = 37
+    # Radius of the robot, in meters (requires tuning by hand)
+    self.rb = 0.601 / 2.0
     # Radius of the wheels, in meters.
     self.r = 0.0508
     # Resistance of the motor, divided by the number of motors.
-    self.R = 12.0 / self.stall_current / 2
+    self.resistance = 12.0 / self.stall_current
     # Motor velocity constant
     self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
-               (12.0 - self.R * self.free_current))
+               (12.0 - self.resistance * self.free_current))
     # Torque constant
     self.Kt = self.stall_torque / self.stall_current
     # Gear ratios
-    self.G_const = 18.0 / 44.0 * 18.0 / 60.0
-
-    self.G_low = self.G_const
-    self.G_high = self.G_const
-
+    self.G_low = 28.0 / 60.0 * 19.0 / 50.0
+    self.G_high = 28.0 / 48.0 * 19.0 / 50.0
     if left_low:
       self.Gl = self.G_low
     else:
@@ -101,10 +105,10 @@
     self.msp = 1.0 / self.m + self.rb * self.rb / self.J
     self.msn = 1.0 / self.m - self.rb * self.rb / self.J
     # The calculations which we will need for A and B.
-    self.tcl = -self.Kt / self.Kv / (self.Gl * self.Gl * self.R * self.r * self.r)
-    self.tcr = -self.Kt / self.Kv / (self.Gr * self.Gr * self.R * self.r * self.r)
-    self.mpl = self.Kt / (self.Gl * self.R * self.r)
-    self.mpr = self.Kt / (self.Gr * self.R * self.r)
+    self.tcl = -self.Kt / self.Kv / (self.Gl * self.Gl * self.resistance * self.r * self.r)
+    self.tcr = -self.Kt / self.Kv / (self.Gr * self.Gr * self.resistance * self.r * self.r)
+    self.mpl = self.Kt / (self.Gl * self.resistance * self.r)
+    self.mpr = self.Kt / (self.Gr * self.resistance * self.r)
 
     # State feedback matrices
     # X will be of the format
@@ -124,17 +128,16 @@
     self.D = numpy.matrix([[0, 0],
                            [0, 0]])
 
-    #glog.debug('THE NUMBER I WANT %s', str(numpy.linalg.inv(self.A_continuous) * -self.B_continuous * numpy.matrix([[12.0], [12.0]])))
     self.A, self.B = self.ContinuousToDiscrete(
         self.A_continuous, self.B_continuous, self.dt)
 
-    # Poles from last year.
-    self.hp = 0.65
-    self.lp = 0.83
-    self.PlaceControllerPoles([self.hp, self.lp, self.hp, self.lp])
-    glog.info('K %s', str(self.K))
-    q_pos = 0.07
-    q_vel = 1.0
+    if left_low or right_low:
+      q_pos = 0.12
+      q_vel = 1.0
+    else:
+      q_pos = 0.14
+      q_vel = 0.95
+
     self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0, 0.0, 0.0],
                            [0.0, (1.0 / (q_vel ** 2.0)), 0.0, 0.0],
                            [0.0, 0.0, (1.0 / (q_pos ** 2.0)), 0.0],
@@ -143,10 +146,10 @@
     self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0)), 0.0],
                            [0.0, (1.0 / (12.0 ** 2.0))]])
     self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
-    glog.info('A %s', str(self.A))
-    glog.info('B %s', str(self.B))
-    glog.info('K %s', str(self.K))
-    glog.info('Poles are %s', str(numpy.linalg.eig(self.A - self.B * self.K)[0]))
+
+    glog.debug('DT q_pos %f q_vel %s %s', q_pos, q_vel, name)
+    glog.debug(str(numpy.linalg.eig(self.A - self.B * self.K)[0]))
+    glog.debug('K %s', repr(self.K))
 
     self.hlp = 0.3
     self.llp = 0.4
@@ -154,11 +157,102 @@
 
     self.U_max = numpy.matrix([[12.0], [12.0]])
     self.U_min = numpy.matrix([[-12.0], [-12.0]])
+
     self.InitializeState()
 
+
+class KFDrivetrain(Drivetrain):
+  def __init__(self, name="KFDrivetrain", left_low=True, right_low=True):
+    super(KFDrivetrain, self).__init__(name, left_low, right_low)
+
+    self.unaugmented_A_continuous = self.A_continuous
+    self.unaugmented_B_continuous = self.B_continuous
+
+    # The states are
+    # The practical voltage applied to the wheels is
+    #   V_left = U_left + left_voltage_error
+    #
+    # [left position, left velocity, right position, right velocity,
+    #  left voltage error, right voltage error, angular_error]
+    #
+    # The left and right positions are filtered encoder positions and are not
+    # adjusted for heading error.
+    # The turn velocity as computed by the left and right velocities is
+    # adjusted by the gyro velocity.
+    # The angular_error is the angular velocity error between the wheel speed
+    # and the gyro speed.
+    self.A_continuous = numpy.matrix(numpy.zeros((7, 7)))
+    self.B_continuous = numpy.matrix(numpy.zeros((7, 2)))
+    self.A_continuous[0:4,0:4] = self.unaugmented_A_continuous
+    self.A_continuous[0:4,4:6] = self.unaugmented_B_continuous
+    self.B_continuous[0:4,0:2] = self.unaugmented_B_continuous
+    self.A_continuous[0,6] = 1
+    self.A_continuous[2,6] = -1
+
+    self.A, self.B = self.ContinuousToDiscrete(
+        self.A_continuous, self.B_continuous, self.dt)
+
+    self.C = numpy.matrix([[1, 0, 0, 0, 0, 0, 0],
+                           [0, 0, 1, 0, 0, 0, 0],
+                           [0, -0.5 / self.rb, 0, 0.5 / self.rb, 0, 0, 0]])
+
+    self.D = numpy.matrix([[0, 0],
+                           [0, 0],
+                           [0, 0]])
+
+    q_pos = 0.05
+    q_vel = 1.00
+    q_voltage = 10.0
+    q_encoder_uncertainty = 2.00
+
+    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
+                           [0.0, (q_vel ** 2.0), 0.0, 0.0, 0.0, 0.0, 0.0],
+                           [0.0, 0.0, (q_pos ** 2.0), 0.0, 0.0, 0.0, 0.0],
+                           [0.0, 0.0, 0.0, (q_vel ** 2.0), 0.0, 0.0, 0.0],
+                           [0.0, 0.0, 0.0, 0.0, (q_voltage ** 2.0), 0.0, 0.0],
+                           [0.0, 0.0, 0.0, 0.0, 0.0, (q_voltage ** 2.0), 0.0],
+                           [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, (q_encoder_uncertainty ** 2.0)]])
+
+    r_pos =  0.0001
+    r_gyro = 0.000001
+    self.R = numpy.matrix([[(r_pos ** 2.0), 0.0, 0.0],
+                           [0.0, (r_pos ** 2.0), 0.0],
+                           [0.0, 0.0, (r_gyro ** 2.0)]])
+
+    # Solving for kf gains.
+    self.KalmanGain, self.Q_steady = controls.kalman(
+        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+
+    self.L = self.A * self.KalmanGain
+
+    unaug_K = self.K
+
+    # Implement a nice closed loop controller for use by the closed loop
+    # controller.
+    self.K = numpy.matrix(numpy.zeros((self.B.shape[1], self.A.shape[0])))
+    self.K[0:2, 0:4] = unaug_K
+    self.K[0, 4] = 1.0
+    self.K[1, 5] = 1.0
+
+    self.Qff = numpy.matrix(numpy.zeros((4, 4)))
+    qff_pos = 0.005
+    qff_vel = 1.00
+    self.Qff[0, 0] = 1.0 / qff_pos ** 2.0
+    self.Qff[1, 1] = 1.0 / qff_vel ** 2.0
+    self.Qff[2, 2] = 1.0 / qff_pos ** 2.0
+    self.Qff[3, 3] = 1.0 / qff_vel ** 2.0
+    self.Kff = numpy.matrix(numpy.zeros((2, 7)))
+    self.Kff[0:2, 0:4] = controls.TwoStateFeedForwards(self.B[0:4,:], self.Qff)
+
+    self.InitializeState()
+
+
 def main(argv):
+  argv = FLAGS(argv)
+  glog.init()
+
   # Simulate the response of the system to a step input.
-  drivetrain = Drivetrain()
+  drivetrain = Drivetrain(left_low=False, right_low=False)
   simulated_left = []
   simulated_right = []
   for _ in xrange(100):
@@ -166,26 +260,37 @@
     simulated_left.append(drivetrain.X[0, 0])
     simulated_right.append(drivetrain.X[2, 0])
 
-  #pylab.plot(range(100), simulated_left)
-  #pylab.plot(range(100), simulated_right)
-  #pylab.show()
+  if FLAGS.plot:
+    pylab.plot(range(100), simulated_left)
+    pylab.plot(range(100), simulated_right)
+    pylab.suptitle('Acceleration Test')
+    pylab.show()
 
   # Simulate forwards motion.
-  drivetrain = Drivetrain()
+  drivetrain = Drivetrain(left_low=False, right_low=False)
   close_loop_left = []
   close_loop_right = []
+  left_power = []
+  right_power = []
   R = numpy.matrix([[1.0], [0.0], [1.0], [0.0]])
-  for _ in xrange(100):
+  for _ in xrange(300):
     U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
                    drivetrain.U_min, drivetrain.U_max)
     drivetrain.UpdateObserver(U)
     drivetrain.Update(U)
     close_loop_left.append(drivetrain.X[0, 0])
     close_loop_right.append(drivetrain.X[2, 0])
+    left_power.append(U[0, 0])
+    right_power.append(U[1, 0])
 
-  #pylab.plot(range(100), close_loop_left)
-  #pylab.plot(range(100), close_loop_right)
-  #pylab.show()
+  if FLAGS.plot:
+    pylab.plot(range(300), close_loop_left, label='left position')
+    pylab.plot(range(300), close_loop_right, label='right position')
+    pylab.plot(range(300), left_power, label='left power')
+    pylab.plot(range(300), right_power, label='right power')
+    pylab.suptitle('Linear Move')
+    pylab.legend()
+    pylab.show()
 
   # Try turning in place
   drivetrain = Drivetrain()
@@ -200,9 +305,11 @@
     close_loop_left.append(drivetrain.X[0, 0])
     close_loop_right.append(drivetrain.X[2, 0])
 
-  #pylab.plot(range(100), close_loop_left)
-  #pylab.plot(range(100), close_loop_right)
-  #pylab.show()
+  if FLAGS.plot:
+    pylab.plot(range(100), close_loop_left)
+    pylab.plot(range(100), close_loop_right)
+    pylab.suptitle('Angular Move')
+    pylab.show()
 
   # Try turning just one side.
   drivetrain = Drivetrain()
@@ -217,25 +324,75 @@
     close_loop_left.append(drivetrain.X[0, 0])
     close_loop_right.append(drivetrain.X[2, 0])
 
-  #pylab.plot(range(100), close_loop_left)
-  #pylab.plot(range(100), close_loop_right)
-  #pylab.show()
+  if FLAGS.plot:
+    pylab.plot(range(100), close_loop_left)
+    pylab.plot(range(100), close_loop_right)
+    pylab.suptitle('Pivot')
+    pylab.show()
 
   # Write the generated constants out to a file.
-  glog.info('Output one')
-  drivetrain_low_low = Drivetrain(name="DrivetrainLowLow", left_low=True, right_low=True)
-  drivetrain_low_high = Drivetrain(name="DrivetrainLowHigh", left_low=True, right_low=False)
-  drivetrain_high_low = Drivetrain(name="DrivetrainHighLow", left_low=False, right_low=True)
-  drivetrain_high_high = Drivetrain(name="DrivetrainHighHigh", left_low=False, right_low=False)
+  drivetrain_low_low = Drivetrain(
+      name="DrivetrainLowLow", left_low=True, right_low=True)
+  drivetrain_low_high = Drivetrain(
+      name="DrivetrainLowHigh", left_low=True, right_low=False)
+  drivetrain_high_low = Drivetrain(
+      name="DrivetrainHighLow", left_low=False, right_low=True)
+  drivetrain_high_high = Drivetrain(
+      name="DrivetrainHighHigh", left_low=False, right_low=False)
 
-  if len(argv) != 3:
-    glog.fatal('Expected .h file name and .cc file name')
+  kf_drivetrain_low_low = KFDrivetrain(
+      name="KFDrivetrainLowLow", left_low=True, right_low=True)
+  kf_drivetrain_low_high = KFDrivetrain(
+      name="KFDrivetrainLowHigh", left_low=True, right_low=False)
+  kf_drivetrain_high_low = KFDrivetrain(
+      name="KFDrivetrainHighLow", left_low=False, right_low=True)
+  kf_drivetrain_high_high = KFDrivetrain(
+      name="KFDrivetrainHighHigh", left_low=False, right_low=False)
+
+  if len(argv) != 5:
+    print "Expected .h file name and .cc file name"
   else:
+    namespaces = ['y2014_bot3', 'control_loops', 'drivetrain']
     dog_loop_writer = control_loop.ControlLoopWriter(
         "Drivetrain", [drivetrain_low_low, drivetrain_low_high,
                        drivetrain_high_low, drivetrain_high_high],
-        namespaces=['y2014_bot3', 'control_loops', 'drivetrain'])
+        namespaces = namespaces)
+    dog_loop_writer.AddConstant(control_loop.Constant("kDt", "%f",
+          drivetrain_low_low.dt))
+    dog_loop_writer.AddConstant(control_loop.Constant("kStallTorque", "%f",
+          drivetrain_low_low.stall_torque))
+    dog_loop_writer.AddConstant(control_loop.Constant("kStallCurrent", "%f",
+          drivetrain_low_low.stall_current))
+    dog_loop_writer.AddConstant(control_loop.Constant("kFreeSpeedRPM", "%f",
+          drivetrain_low_low.free_speed))
+    dog_loop_writer.AddConstant(control_loop.Constant("kFreeCurrent", "%f",
+          drivetrain_low_low.free_current))
+    dog_loop_writer.AddConstant(control_loop.Constant("kJ", "%f",
+          drivetrain_low_low.J))
+    dog_loop_writer.AddConstant(control_loop.Constant("kMass", "%f",
+          drivetrain_low_low.m))
+    dog_loop_writer.AddConstant(control_loop.Constant("kRobotRadius", "%f",
+          drivetrain_low_low.rb))
+    dog_loop_writer.AddConstant(control_loop.Constant("kWheelRadius", "%f",
+          drivetrain_low_low.r))
+    dog_loop_writer.AddConstant(control_loop.Constant("kR", "%f",
+          drivetrain_low_low.resistance))
+    dog_loop_writer.AddConstant(control_loop.Constant("kV", "%f",
+          drivetrain_low_low.Kv))
+    dog_loop_writer.AddConstant(control_loop.Constant("kT", "%f",
+          drivetrain_low_low.Kt))
+    dog_loop_writer.AddConstant(control_loop.Constant("kLowGearRatio", "%f",
+          drivetrain_low_low.G_low))
+    dog_loop_writer.AddConstant(control_loop.Constant("kHighGearRatio", "%f",
+          drivetrain_high_high.G_high))
+
     dog_loop_writer.Write(argv[1], argv[2])
 
+    kf_loop_writer = control_loop.ControlLoopWriter(
+        "KFDrivetrain", [kf_drivetrain_low_low, kf_drivetrain_low_high,
+                         kf_drivetrain_high_low, kf_drivetrain_high_high],
+        namespaces = namespaces)
+    kf_loop_writer.Write(argv[3], argv[4])
+
 if __name__ == '__main__':
   sys.exit(main(sys.argv))
diff --git a/y2014_bot3/control_loops/python/polydrivetrain.py b/y2014_bot3/control_loops/python/polydrivetrain.py
index 2ffbed6..e047c11 100755
--- a/y2014_bot3/control_loops/python/polydrivetrain.py
+++ b/y2014_bot3/control_loops/python/polydrivetrain.py
@@ -2,14 +2,23 @@
 
 import numpy
 import sys
-import polytope
-import drivetrain
-import control_loop
-import controls
+from frc971.control_loops.python import polytope
+from y2014_bot3.control_loops.python import drivetrain
+from frc971.control_loops.python import control_loop
+from frc971.control_loops.python import controls
 from matplotlib import pylab
 
+import gflags
+import glog
+
 __author__ = 'Austin Schuh (austin.linux@gmail.com)'
 
+FLAGS = gflags.FLAGS
+
+try:
+  gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+except gflags.DuplicateFlagError:
+  pass
 
 def CoerceGoal(region, K, w, R):
   """Intersects a line with a region, and finds the closest point to R.
@@ -110,8 +119,8 @@
     self.B_continuous = numpy.matrix(
         [[self._drivetrain.B_continuous[1, 0], self._drivetrain.B_continuous[1, 1]],
          [self._drivetrain.B_continuous[3, 0], self._drivetrain.B_continuous[3, 1]]])
-    self.C = numpy.matrix(numpy.eye(2));
-    self.D = numpy.matrix(numpy.zeros((2, 2)));
+    self.C = numpy.matrix(numpy.eye(2))
+    self.D = numpy.matrix(numpy.zeros((2, 2)))
 
     self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
                                                self.B_continuous, self.dt)
@@ -119,12 +128,12 @@
     # FF * X = U (steady state)
     self.FF = self.B.I * (numpy.eye(2) - self.A)
 
-    self.PlaceControllerPoles([0.6, 0.6])
+    self.PlaceControllerPoles([0.67, 0.67])
     self.PlaceObserverPoles([0.02, 0.02])
 
     self.G_high = self._drivetrain.G_high
     self.G_low = self._drivetrain.G_low
-    self.R = self._drivetrain.R
+    self.resistance = self._drivetrain.resistance
     self.r = self._drivetrain.r
     self.Kv = self._drivetrain.Kv
     self.Kt = self._drivetrain.Kt
@@ -174,10 +183,14 @@
         [[0.0],
          [0.0]])
 
+    self.U_ideal = numpy.matrix(
+        [[0.0],
+         [0.0]])
+
     # ttrust is the comprimise between having full throttle negative inertia,
     # and having no throttle negative inertia.  A value of 0 is full throttle
     # inertia.  A value of 1 is no throttle negative inertia.
-    self.ttrust = 1.1
+    self.ttrust = 1.0
 
     self.left_gear = VelocityDrivetrain.LOW
     self.right_gear = VelocityDrivetrain.LOW
@@ -229,9 +242,9 @@
                  self.CurrentDrivetrain().r)
     #print gear_name, "Motor Energy Difference.", 0.5 * 0.000140032647 * (low_omega * low_omega - high_omega * high_omega), "joules"
     high_torque = ((12.0 - high_omega / self.CurrentDrivetrain().Kv) *
-                   self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().R)
+                   self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().resistance)
     low_torque = ((12.0 - low_omega / self.CurrentDrivetrain().Kv) *
-                  self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().R)
+                  self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().resistance)
     high_power = high_torque * high_omega
     low_power = low_torque * low_omega
     #if should_print:
@@ -250,16 +263,16 @@
     #goal_gear_is_high = True
 
     if not self.IsInGear(current_gear):
-      print gear_name, 'Not in gear.'
+      glog.debug('%s Not in gear.', gear_name)
       return current_gear
     else:
       is_high = current_gear is VelocityDrivetrain.HIGH
       if is_high != goal_gear_is_high:
         if goal_gear_is_high:
-          print gear_name, 'Shifting up.'
+          glog.debug('%s Shifting up.', gear_name)
           return VelocityDrivetrain.SHIFTING_UP
         else:
-          print gear_name, 'Shifting down.'
+          glog.debug('%s Shifting down.', gear_name)
           return VelocityDrivetrain.SHIFTING_DOWN
       else:
         return current_gear
@@ -303,7 +316,7 @@
     # wheel.
 
     self.left_gear = self.right_gear = True
-    if False:
+    if True:
       self.left_gear = self.ComputeGear(self.X[0, 0], should_print=True,
                                         current_gear=self.left_gear,
                                         gear_name="left")
@@ -316,8 +329,7 @@
       if self.IsInGear(self.right_gear):
         self.right_cim.X[0, 0] = self.MotorRPM(self.right_shifter_position, self.X[0, 0])
 
-    steering *= 2.3
-    if True or self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
+    if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
       # Filter the throttle to provide a nicer response.
       fvel = self.FilterVelocity(throttle)
 
@@ -362,7 +374,7 @@
       FF_volts = self.CurrentDrivetrain().FF * self.boxed_R
       self.U_ideal = self.CurrentDrivetrain().K * (self.boxed_R - self.X) + FF_volts
     else:
-      print 'Not all in gear'
+      glog.debug('Not all in gear')
       if not self.IsInGear(self.left_gear) and not self.IsInGear(self.right_gear):
         # TODO(austin): Use battery volts here.
         R_left = self.MotorRPM(self.left_shifter_position, self.X[0, 0])
@@ -383,7 +395,7 @@
 
     # TODO(austin): Model the robot as not accelerating when you shift...
     # This hack only works when you shift at the same time.
-    if True or self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
+    if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
       self.X = self.CurrentDrivetrain().A * self.X + self.CurrentDrivetrain().B * self.U
 
     self.left_gear, self.left_shifter_position = self.SimShifter(
@@ -391,37 +403,36 @@
     self.right_gear, self.right_shifter_position = self.SimShifter(
         self.right_gear, self.right_shifter_position)
 
-    print "U is", self.U[0, 0], self.U[1, 0]
-    print "Left shifter", self.left_gear, self.left_shifter_position, "Right shifter", self.right_gear, self.right_shifter_position
+    glog.debug('U is %s %s', str(self.U[0, 0]), str(self.U[1, 0]))
+    glog.debug('Left shifter %s %d Right shifter %s %d',
+               self.left_gear, self.left_shifter_position,
+               self.right_gear, self.right_shifter_position)
 
 
 def main(argv):
+  argv = FLAGS(argv)
+
   vdrivetrain = VelocityDrivetrain()
 
-  if len(argv) != 7:
-    print "Expected .h file name and .cc file name"
-  else:
-    dog_loop_writer = control_loop.ControlLoopWriter(
-        "VelocityDrivetrain", [vdrivetrain.drivetrain_low_low,
-                       vdrivetrain.drivetrain_low_high,
-                       vdrivetrain.drivetrain_high_low,
-                       vdrivetrain.drivetrain_high_high],
-        namespaces=['y2014_bot3', 'control_loops'])
-
-    if argv[1][-3:] == '.cc':
-      dog_loop_writer.Write(argv[2], argv[1])
+  if not FLAGS.plot:
+    if len(argv) != 5:
+      glog.fatal('Expected .h file name and .cc file name')
     else:
+      namespaces = ['y2014_bot3', 'control_loops', 'drivetrain']
+      dog_loop_writer = control_loop.ControlLoopWriter(
+          "VelocityDrivetrain", [vdrivetrain.drivetrain_low_low,
+                         vdrivetrain.drivetrain_low_high,
+                         vdrivetrain.drivetrain_high_low,
+                         vdrivetrain.drivetrain_high_high],
+                         namespaces=namespaces)
+
       dog_loop_writer.Write(argv[1], argv[2])
 
-    cim_writer = control_loop.ControlLoopWriter(
-        "CIM", [drivetrain.CIM()],
-        namespaces=['y2014_bot3', 'control_loops'])
+      cim_writer = control_loop.ControlLoopWriter(
+          "CIM", [drivetrain.CIM()])
 
-    if argv[5][-3:] == '.cc':
-      cim_writer.Write(argv[6], argv[5])
-    else:
-      cim_writer.Write(argv[5], argv[6])
-    return
+      cim_writer.Write(argv[3], argv[4])
+      return
 
   vl_plot = []
   vr_plot = []
@@ -436,16 +447,16 @@
   vdrivetrain.left_gear = VelocityDrivetrain.LOW
   vdrivetrain.right_gear = VelocityDrivetrain.LOW
 
-  print "K is", vdrivetrain.CurrentDrivetrain().K
+  glog.debug('K is %s', str(vdrivetrain.CurrentDrivetrain().K))
 
   if vdrivetrain.left_gear is VelocityDrivetrain.HIGH:
-    print "Left is high"
+    glog.debug('Left is high')
   else:
-    print "Left is low"
+    glog.debug('Left is low')
   if vdrivetrain.right_gear is VelocityDrivetrain.HIGH:
-    print "Right is high"
+    glog.debug('Right is high')
   else:
-    print "Right is low"
+    glog.debug('Right is low')
 
   for t in numpy.arange(0, 1.7, vdrivetrain.dt):
     if t < 0.5:
@@ -469,22 +480,6 @@
     else:
       radius_plot.append(turn_velocity / fwd_velocity)
 
-  cim_velocity_plot = []
-  cim_voltage_plot = []
-  cim_time = []
-  cim = drivetrain.CIM()
-  R = numpy.matrix([[300]])
-  for t in numpy.arange(0, 0.5, cim.dt):
-    U = numpy.clip(cim.K * (R - cim.X) + R / cim.Kv, cim.U_min, cim.U_max)
-    cim.Update(U)
-    cim_velocity_plot.append(cim.X[0, 0])
-    cim_voltage_plot.append(U[0, 0] * 10)
-    cim_time.append(t)
-  pylab.plot(cim_time, cim_velocity_plot, label='cim spinup')
-  pylab.plot(cim_time, cim_voltage_plot, label='cim voltage')
-  pylab.legend()
-  pylab.show()
-
   # TODO(austin):
   # Shifting compensation.
 
diff --git a/y2014_bot3/joystick_reader.cc b/y2014_bot3/joystick_reader.cc
index 6dfcbb4..86f78dc 100644
--- a/y2014_bot3/joystick_reader.cc
+++ b/y2014_bot3/joystick_reader.cc
@@ -11,11 +11,11 @@
 #include "aos/common/time.h"
 
 #include "frc971/queues/gyro.q.h"
+#include "frc971/control_loops/drivetrain/drivetrain.q.h"
 #include "y2014_bot3/autonomous/auto.q.h"
-#include "y2014_bot3/control_loops/drivetrain/drivetrain.q.h"
 #include "y2014_bot3/control_loops/rollers/rollers.q.h"
 
-using ::y2014_bot3::control_loops::drivetrain_queue;
+using ::frc971::control_loops::drivetrain_queue;
 using ::y2014_bot3::control_loops::rollers_queue;
 using ::frc971::sensors::gyro_reading;
 
@@ -30,9 +30,12 @@
 
 // Joystick & button addresses.
 const JoystickAxis kSteeringWheel(1, 1), kDriveThrottle(2, 2);
-const ButtonLocation kShiftHigh(2, 3), kShiftLow(2, 1);
+const ButtonLocation kShiftHigh(2, 3), kShiftHigh2(2, 2), kShiftLow(2, 1);
 const ButtonLocation kQuickTurn(1, 5);
 
+const ButtonLocation kTurn1(1, 7);
+const ButtonLocation kTurn2(1, 11);
+
 const ButtonLocation kFrontRollersIn(3, 8);
 const ButtonLocation kBackRollersIn(3, 7);
 const ButtonLocation kFrontRollersOut(3, 6);
@@ -62,15 +65,33 @@
   }
 
   void HandleDrivetrain(const ::aos::input::driver_station::Data &data) {
+    bool is_control_loop_driving = false;
+    static double left_goal = 0.0;
+    static double right_goal = 0.0;
     const double wheel = -data.GetAxis(kSteeringWheel);
     const double throttle = -data.GetAxis(kDriveThrottle);
 
+    if (data.PosEdge(kTurn1) || data.PosEdge(kTurn2)) {
+      drivetrain_queue.status.FetchLatest();
+      if (drivetrain_queue.status.get()) {
+        left_goal = drivetrain_queue.status->estimated_left_position;
+        right_goal = drivetrain_queue.status->estimated_right_position;
+      }
+    }
+    if (data.IsPressed(kTurn1) || data.IsPressed(kTurn2)) {
+      is_control_loop_driving = true;
+    }
+
     if (!drivetrain_queue.goal.MakeWithBuilder()
              .steering(wheel)
              .throttle(throttle)
-             .quickturn(data.IsPressed(kQuickTurn))
-             .control_loop_driving(false)
              .highgear(is_high_gear_)
+             .quickturn(data.IsPressed(kQuickTurn))
+             .control_loop_driving(is_control_loop_driving)
+             .left_goal(left_goal - wheel * 0.5 + throttle * 0.3)
+             .right_goal(right_goal + wheel * 0.5 + throttle * 0.3)
+             .left_velocity_goal(0)
+             .right_velocity_goal(0)
              .Send()) {
       LOG(WARNING, "sending stick values failed\n");
     }
@@ -79,7 +100,7 @@
       is_high_gear_ = false;
     }
 
-    if (data.PosEdge(kShiftHigh)) {
+    if (data.PosEdge(kShiftHigh) || data.PosEdge(kShiftHigh2)) {
       is_high_gear_ = true;
     }
   }
diff --git a/y2014_bot3/wpilib/BUILD b/y2014_bot3/wpilib/BUILD
index 5f5319c..8af099f 100644
--- a/y2014_bot3/wpilib/BUILD
+++ b/y2014_bot3/wpilib/BUILD
@@ -10,7 +10,7 @@
     '//aos/common:stl_mutex',
     '//aos/common/logging',
     '//third_party/allwpilib_2016:wpilib',
-    '//y2014_bot3/control_loops/drivetrain:drivetrain_queue',
+    '//frc971/control_loops/drivetrain:drivetrain_queue',
     '//aos/common/controls:control_loop',
     '//aos/common/util:log_interval',
     '//aos/common:time',
@@ -29,7 +29,7 @@
     '//frc971/wpilib:pdp_fetcher',
     '//frc971/wpilib:dma',
     '//y2014_bot3/autonomous:auto_queue',
-    '//y2014_bot3/control_loops/drivetrain:drivetrain_lib',
     '//y2014_bot3/control_loops/rollers:rollers_lib',
+    '//y2014_bot3/control_loops/drivetrain:drivetrain_base',
   ],
 )
diff --git a/y2014_bot3/wpilib/wpilib_interface.cc b/y2014_bot3/wpilib/wpilib_interface.cc
index e1e07a0..4abbfce 100644
--- a/y2014_bot3/wpilib/wpilib_interface.cc
+++ b/y2014_bot3/wpilib/wpilib_interface.cc
@@ -3,6 +3,7 @@
 #include <unistd.h>
 #include <inttypes.h>
 
+#include <chrono>
 #include <thread>
 #include <mutex>
 #include <functional>
@@ -27,10 +28,10 @@
 #include "aos/linux_code/init.h"
 #include "aos/common/messages/robot_state.q.h"
 
-#include "y2014_bot3/control_loops/drivetrain/drivetrain.q.h"
+#include "frc971/control_loops/drivetrain/drivetrain.q.h"
+#include "y2014_bot3/control_loops/drivetrain/drivetrain_base.h"
 #include "y2014_bot3/control_loops/rollers/rollers.q.h"
 #include "y2014_bot3/autonomous/auto.q.h"
-#include "y2014_bot3/control_loops/drivetrain/drivetrain.h"
 #include "y2014_bot3/control_loops/rollers/rollers.h"
 
 #include "frc971/wpilib/joystick_sender.h"
@@ -48,7 +49,7 @@
 #endif
 
 using ::aos::util::SimpleLogInterval;
-using ::y2014_bot3::control_loops::drivetrain_queue;
+using ::frc971::control_loops::drivetrain_queue;
 using ::y2014_bot3::control_loops::rollers_queue;
 using ::frc971::wpilib::BufferedPcm;
 using ::frc971::wpilib::BufferedSolenoid;
@@ -61,13 +62,13 @@
 
 double drivetrain_translate(int32_t in) {
   return static_cast<double>(in) / (256.0 /*cpr*/ * 4.0 /*4x*/) *
-         ::y2014_bot3::control_loops::kDrivetrainEncoderRatio *
+         ::y2014_bot3::control_loops::drivetrain::kDrivetrainEncoderRatio *
          (4 /*wheel diameter*/ * 2.54 / 100.0 * M_PI);
 }
 
 double drivetrain_velocity_translate(double in) {
   return (1.0 / in) / 256.0 /*cpr*/ *
-         ::y2014_bot3::control_loops::kDrivetrainEncoderRatio *
+         ::y2014_bot3::control_loops::drivetrain::kDrivetrainEncoderRatio *
          (4 /*wheel diameter*/ * 2.54 / 100.0 * M_PI);
 }
 
@@ -97,8 +98,8 @@
         &DriverStation::GetInstance();
 #endif
 
-    ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
-                                        ::aos::time::Time::InMS(4));
+    ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
+                                        ::std::chrono::milliseconds(4));
 
     ::aos::SetCurrentThreadRealtimePriority(40);
     while (run_) {
@@ -154,7 +155,7 @@
  public:
   SolenoidWriter(const ::std::unique_ptr<::frc971::wpilib::BufferedPcm> &pcm)
       : pcm_(pcm),
-        drivetrain_(".y2014_bot3.control_loops.drivetrain_queue.output"),
+        drivetrain_(".frc971.control_loops.drivetrain_queue.output"),
         rollers_(".y2014_bot3.control_loops.rollers_queue.output") {}
 
   void set_pressure_switch(::std::unique_ptr<DigitalInput> pressure_switch) {
@@ -185,8 +186,8 @@
     ::aos::SetCurrentThreadName("Solenoids");
     ::aos::SetCurrentThreadRealtimePriority(27);
 
-    ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(20),
-                                        ::aos::time::Time::InMS(1));
+    ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(20),
+                                        ::std::chrono::milliseconds(1));
 
     while (run_) {
       {
@@ -249,7 +250,7 @@
   ::std::unique_ptr<DigitalInput> pressure_switch_;
   ::std::unique_ptr<Relay> compressor_relay_;
 
-  ::aos::Queue<::y2014_bot3::control_loops::DrivetrainQueue::Output>
+  ::aos::Queue<::frc971::control_loops::DrivetrainQueue::Output>
       drivetrain_;
   ::aos::Queue<::y2014_bot3::control_loops::RollersQueue::Output> rollers_;
 
@@ -269,11 +270,11 @@
 
  private:
   virtual void Read() override {
-    ::y2014_bot3::control_loops::drivetrain_queue.output.FetchAnother();
+    ::frc971::control_loops::drivetrain_queue.output.FetchAnother();
   }
 
   virtual void Write() override {
-    auto &queue = ::y2014_bot3::control_loops::drivetrain_queue.output;
+    auto &queue = ::frc971::control_loops::drivetrain_queue.output;
     LOG_STRUCT(DEBUG, "will output", *queue);
     left_drivetrain_talon_->Set(-queue->left_voltage / 12.0);
     right_drivetrain_talon_->Set(queue->right_voltage / 12.0);
@@ -373,9 +374,9 @@
     // Outputs
     DrivetrainWriter drivetrain_writer;
     drivetrain_writer.set_left_drivetrain_talon(
-        ::std::unique_ptr<Talon>(new Talon(2)));
-    drivetrain_writer.set_right_drivetrain_talon(
         ::std::unique_ptr<Talon>(new Talon(5)));
+    drivetrain_writer.set_right_drivetrain_talon(
+        ::std::unique_ptr<Talon>(new Talon(2)));
     ::std::thread drivetrain_writer_thread(::std::ref(drivetrain_writer));
 
     RollersWriter rollers_writer;
diff --git a/y2015/wpilib/wpilib_interface.cc b/y2015/wpilib/wpilib_interface.cc
index 3130424..14ca146 100644
--- a/y2015/wpilib/wpilib_interface.cc
+++ b/y2015/wpilib/wpilib_interface.cc
@@ -3,9 +3,10 @@
 #include <unistd.h>
 #include <inttypes.h>
 
-#include <thread>
-#include <mutex>
+#include <chrono>
 #include <functional>
+#include <mutex>
+#include <thread>
 
 #include "Encoder.h"
 #include "Talon.h"
@@ -241,8 +242,8 @@
     wrist_encoder_.Start();
     dma_synchronizer_->Start();
 
-    ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
-                                        ::aos::time::Time::InMS(4));
+    ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
+                                        ::std::chrono::milliseconds(4));
 
     ::aos::SetCurrentThreadRealtimePriority(40);
     while (run_) {
@@ -418,8 +419,8 @@
     ::aos::SetCurrentThreadName("Solenoids");
     ::aos::SetCurrentThreadRealtimePriority(27);
 
-    ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(20),
-                                        ::aos::time::Time::InMS(1));
+    ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(20),
+                                        ::std::chrono::milliseconds(1));
 
     while (run_) {
       {
diff --git a/y2015_bot3/wpilib/wpilib_interface.cc b/y2015_bot3/wpilib/wpilib_interface.cc
index cb2acf1..bbfa91e 100644
--- a/y2015_bot3/wpilib/wpilib_interface.cc
+++ b/y2015_bot3/wpilib/wpilib_interface.cc
@@ -3,6 +3,7 @@
 #include <unistd.h>
 #include <inttypes.h>
 
+#include <chrono>
 #include <thread>
 #include <mutex>
 #include <functional>
@@ -137,8 +138,8 @@
         &DriverStation::GetInstance();
 #endif
 
-    ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
-                                        ::aos::time::Time::InMS(4));
+    ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
+                                        ::std::chrono::milliseconds(4));
 
     ::aos::SetCurrentThreadRealtimePriority(40);
     while (run_) {
@@ -242,8 +243,8 @@
     ::aos::SetCurrentThreadName("Solenoids");
     ::aos::SetCurrentThreadRealtimePriority(27);
 
-    ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(20),
-                                        ::aos::time::Time::InMS(1));
+    ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(20),
+                                        ::std::chrono::milliseconds(1));
 
     while (run_) {
       {
diff --git a/y2016/actors/autonomous_actor.cc b/y2016/actors/autonomous_actor.cc
index 199dda5..7b3fc60 100644
--- a/y2016/actors/autonomous_actor.cc
+++ b/y2016/actors/autonomous_actor.cc
@@ -2,6 +2,7 @@
 
 #include <inttypes.h>
 
+#include <chrono>
 #include <cmath>
 
 #include "aos/common/util/phased_loop.h"
@@ -102,8 +103,8 @@
     return;
   }
 
-  ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
-                                      ::aos::time::Time::InMS(5) / 2);
+  ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
+                                      ::std::chrono::milliseconds(5) / 2);
   while (true) {
     // Poll the running bit and see if we should cancel.
     phased_loop.SleepUntilNext();
@@ -116,8 +117,8 @@
 constexpr double kDoNotTurnCare = 2.0;
 
 bool AutonomousActor::WaitForDriveNear(double distance, double angle) {
-  ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
-                                      ::aos::time::Time::InMS(5) / 2);
+  ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
+                                      ::std::chrono::milliseconds(5) / 2);
   constexpr double kPositionTolerance = 0.02;
   constexpr double kProfileTolerance = 0.001;
 
@@ -164,8 +165,8 @@
 }
 
 bool AutonomousActor::WaitForDriveProfileDone() {
-  ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
-                                      ::aos::time::Time::InMS(5) / 2);
+  ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
+                                      ::std::chrono::milliseconds(5) / 2);
   constexpr double kProfileTolerance = 0.001;
 
   while (true) {
@@ -187,8 +188,8 @@
 }
 
 bool AutonomousActor::WaitForMaxBy(double angle) {
-  ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
-                                      ::aos::time::Time::InMS(5) / 2);
+  ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
+                                      ::std::chrono::milliseconds(5) / 2);
   double max_angle = -M_PI;
   while (true) {
     if (ShouldCancel()) {
@@ -211,8 +212,8 @@
 }
 
 bool AutonomousActor::WaitForAboveAngle(double angle) {
-  ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
-                                      ::aos::time::Time::InMS(5) / 2);
+  ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
+                                      ::std::chrono::milliseconds(5) / 2);
   while (true) {
     if (ShouldCancel()) {
       return false;
@@ -231,8 +232,8 @@
 }
 
 bool AutonomousActor::WaitForBelowAngle(double angle) {
-  ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
-                                      ::aos::time::Time::InMS(5) / 2);
+  ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
+                                      ::std::chrono::milliseconds(5) / 2);
   while (true) {
     if (ShouldCancel()) {
       return false;
@@ -276,8 +277,8 @@
 }
 
 bool AutonomousActor::WaitForDriveDone() {
-  ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
-                                      ::aos::time::Time::InMS(5) / 2);
+  ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
+                                      ::std::chrono::milliseconds(5) / 2);
 
   while (true) {
     if (ShouldCancel()) {
@@ -397,8 +398,8 @@
     LOG(ERROR, "Sending shooter goal failed.\n");
   }
 
-  ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
-                                      ::aos::time::Time::InMS(5) / 2);
+  ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
+                                      ::std::chrono::milliseconds(5) / 2);
   while (true) {
     if (ShouldCancel()) return;
 
@@ -414,8 +415,8 @@
 }
 
 void AutonomousActor::WaitForShooterSpeed() {
-  ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
-                                      ::aos::time::Time::InMS(5) / 2);
+  ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
+                                      ::std::chrono::milliseconds(5) / 2);
   while (true) {
     if (ShouldCancel()) return;
 
@@ -442,8 +443,8 @@
   double last_angle = 0.0;
   int ready_to_fire = 0;
 
-  ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
-                                      ::aos::time::Time::InMS(5) / 2);
+  ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
+                                      ::std::chrono::milliseconds(5) / 2);
   ::aos::time::Time end_time =
       ::aos::time::Time::Now() + align_duration;
   while (end_time > ::aos::time::Time::Now()) {
@@ -632,8 +633,10 @@
 
 void AutonomousActor::BackLongShotTwoBallFinish() {
   LOG(INFO, "Expanding for back long shot\n");
-  MoveSuperstructure(0.00, M_PI / 2.0 - 0.2, -0.625, {7.0, 40.0}, {4.0, 6.0},
-                     {10.0, 25.0}, false, 0.0);
+  MoveSuperstructure(
+      0.00, M_PI / 2.0 - 0.2, -0.625 + 0.03, {7.0, 40.0},
+      {4.0, 6.0},
+      {10.0, 25.0}, false, 0.0);
 }
 
 void AutonomousActor::BackLongShot() {
@@ -783,8 +786,8 @@
 }
 
 void AutonomousActor::WaitForBallOrDriveDone() {
-  ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
-                                      ::aos::time::Time::InMS(5) / 2);
+  ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
+                                      ::std::chrono::milliseconds(5) / 2);
   while (true) {
     if (ShouldCancel()) {
       return;
@@ -1164,8 +1167,8 @@
 
   LOG(INFO, "Done %f\n", (aos::time::Time::Now() - start_time).ToSeconds());
 
-  ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
-                                      ::aos::time::Time::InMS(5) / 2);
+  ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
+                                      ::std::chrono::milliseconds(5) / 2);
 
   while (!ShouldCancel()) {
     phased_loop.SleepUntilNext();
diff --git a/y2016/actors/vision_align_actor.cc b/y2016/actors/vision_align_actor.cc
index 00695f0..9491cd4 100644
--- a/y2016/actors/vision_align_actor.cc
+++ b/y2016/actors/vision_align_actor.cc
@@ -1,5 +1,6 @@
 #include "y2016/actors/vision_align_actor.h"
 
+#include <chrono>
 #include <functional>
 #include <numeric>
 
@@ -28,8 +29,8 @@
     const actors::VisionAlignActionParams & /*params*/) {
   const double robot_radius =
       control_loops::drivetrain::GetDrivetrainConfig().robot_radius;
-  ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
-                                      ::aos::time::Time::InMS(5) / 2);
+  ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
+                                      ::std::chrono::milliseconds(5) / 2);
   while (true) {
     const int iterations = phased_loop.SleepUntilNext();
     if (iterations != 1) {
diff --git a/y2016/constants.cc b/y2016/constants.cc
index 974a82d..5353d6e 100644
--- a/y2016/constants.cc
+++ b/y2016/constants.cc
@@ -81,8 +81,7 @@
           5.0,  // drivetrain max speed
 
           // Intake
-          {
-           // Value to add to the pot reading for the intake.
+          {// Value to add to the pot reading for the intake.
            -4.550531 + 150.40906362 * M_PI / 180.0 + 0.5098 - 0.0178 - 0.0725,
            {Values::kZeroingSampleSize, Values::kIntakeEncoderIndexDifference,
             // Location of an index pulse.
@@ -90,21 +89,19 @@
           },
 
           // Shoulder
-          {
-           // Value to add to the pot reading for the shoulder.
-           -1.0 - 0.0822 + 0.06138835 * M_PI / 180.0 - 0.0323 - 0.1057 +
-               0.0035 + 0.0055 - 0.001 - 0.0103 + 0.0032 - 0.0755,
+          {// Value to add to the pot reading for the shoulder.
+           -2.86275657117,
            {Values::kZeroingSampleSize, Values::kShoulderEncoderIndexDifference,
-            0.535359, 2.5},
+            0.097312, 2.5},
           },
 
           // Wrist
-          {
-           // Value to add to the pot reading for the wrist.
+          {// Value to add to the pot reading for the wrist.
            3.2390714288298668 + -0.06138835 * M_PI / 180.0 + 0.0078 - 0.0548 -
-               0.0167 + 0.002 - 0.0026 - 0.1040 - 0.0035 - 0.0012 + 0.0166 - 0.017 + 0.148 + 0.004,
+               0.0167 + 0.002 - 0.0026 - 0.1040 - 0.0035 - 0.0012 + 0.0166 -
+               0.017 + 0.148 + 0.004 + 0.024701 - 0.0741,
            {Values::kZeroingSampleSize, Values::kWristEncoderIndexDifference,
-            -0.354946, 2.5},
+            0.000820, 2.5},
           },
 
           0.0,
@@ -116,10 +113,9 @@
           5.0,  // drivetrain max speed
 
           // Intake
-          {
-           // Hard stop is 164.2067247 degrees.
-           -4.2193 + (164.2067247 * M_PI / 180.0 + 0.02 - 0.0235) + 0.0549 -
-               0.104 + 0.019 - 0.938 + 0.660 - 0.002,
+          {// Hard stop is 160.0185751389329 degrees.
+           -4.2193 + (160.0185751389329 * M_PI / 180.0 + 0.02 - 0.0235) +
+               0.0549 - 0.104 + 0.019 - 0.938 + 0.660 - 0.002 - 0.2081,
            {Values::kZeroingSampleSize, Values::kIntakeEncoderIndexDifference,
             0.332370, 1.3},
           },
@@ -135,7 +131,8 @@
           // Wrist
           {
            3.326328571170133 - 0.06138835 * M_PI / 180.0 - 0.177 + 0.0323 -
-               0.023 + 0.0488 + 0.0120 - 0.0005 - 0.0784 - 0.0010 - 0.080 + 0.1245,
+               0.023 + 0.0488 + 0.0120 - 0.0005 - 0.0784 - 0.0010 - 0.080 +
+               0.1245,
            {Values::kZeroingSampleSize, Values::kWristEncoderIndexDifference,
             -0.263227, 1.3},
           },
diff --git a/y2016/dashboard/dashboard.cc b/y2016/dashboard/dashboard.cc
index bdfedb8..22a77fa 100644
--- a/y2016/dashboard/dashboard.cc
+++ b/y2016/dashboard/dashboard.cc
@@ -49,7 +49,7 @@
     : cur_raw_data_("no data"),
       sample_id_(0),
       measure_index_(0),
-      overflow_id_(20) {}
+      overflow_id_(1) {}
 
 void DataCollector::RunIteration() {
   ::aos::MutexLocker locker(&mutex_);
@@ -183,26 +183,28 @@
 
   // Note that we are ignoring the from_sample being sent to keep up with the
   // live data without worrying about client lag.
-  int32_t cur_sample = sample_id_ - 2;
+  int32_t cur_sample = sample_id_;
   int32_t adjusted_index = GetIndex(cur_sample);
   message << "$";  // Begin data packet.
 
   // Make sure we are not out of range.
-  if (static_cast<size_t>(adjusted_index) <
-      sample_items_.at(0).datapoints.size()) {
-    message << cur_sample << "%"
-            << sample_items_.at(0)
-                   .datapoints.at(adjusted_index)
-                   .time.ToSeconds() << "%";  // Send time.
-    // Add comma-separated list of data points.
-    for (size_t cur_measure = 0; cur_measure < sample_items_.size();
-         cur_measure++) {
-      if (cur_measure > 0) {
-        message << ",";
-      }
-      message << sample_items_.at(cur_measure)
+  if (sample_items_.size() > 0) {
+    if (static_cast<size_t>(adjusted_index) <
+        sample_items_.at(0).datapoints.size()) {
+      message << cur_sample << "%"
+              << sample_items_.at(0)
                      .datapoints.at(adjusted_index)
-                     .value;
+                     .time.ToSeconds() << "%";  // Send time.
+      // Add comma-separated list of data points.
+      for (size_t cur_measure = 0; cur_measure < sample_items_.size();
+           cur_measure++) {
+        if (cur_measure > 0) {
+          message << ",";
+        }
+        message << sample_items_.at(cur_measure)
+                       .datapoints.at(adjusted_index)
+                       .value;
+      }
     }
   }
 
diff --git a/y2016/dashboard/www/index.html b/y2016/dashboard/www/index.html
index da5512f..3821b48 100644
--- a/y2016/dashboard/www/index.html
+++ b/y2016/dashboard/www/index.html
@@ -7,11 +7,11 @@
 var escapable =
   /[\x00-\x1f\ud800-\udfff\u200c-\u200f\u2028-\u202f\u2060-\u206f\ufff0-\uffff]/g;
 var ws;
-var intervalTime = 50;
+var intervalTime = 100;
 var selected = 0;
 var reconnecting = false;
 var lastSampleID = 0;
-var resetTimeout;
+var reconnectTimeout;
 
 // Filter out junky JSON packets that will otherwise cause nasty decoding
 // errors. These errors come as a result of incomplete packets, corrupted data,
@@ -145,12 +145,13 @@
 }
 
 function reconnect() {
+  clearTimeout(reconnectTimeout);
   $('#message').text('Reconnecting...');
   $('#dataTable').empty();
   lastSampleID = 0;
   reconnecting = true;
 
-  setTimeout(function(){
+  reconnectTimeout = setTimeout(function(){
     initSocketLoop()
   }, 500);
 }
diff --git a/y2016/plotting/responsive_plotter.js b/y2016/plotting/responsive_plotter.js
new file mode 100644
index 0000000..0840e1d
--- /dev/null
+++ b/y2016/plotting/responsive_plotter.js
@@ -0,0 +1,238 @@
+"use strict";
+
+// Create anonymous namespace to avoid leaking these functions.
+(function() {
+// Convenience function that fetches a file and extracts the array buffer.
+function fetch_ArrayBuffer(url) { // returns Promise<ArrayBuffer>
+	return fetch(url).then(function(val) { return val.arrayBuffer(); });
+}
+
+// Two dimensional vector.
+class Point2d {
+	constructor(x, y) {
+		this.x = x;
+		this.y = y;
+	}
+	sub(o) { return new Point2d(this.x - o.x, this.y - o.y); }
+	add(o) { return new Point2d(this.x + o.x, this.y + o.y); }
+};
+
+// Drag event object for updating a Point2d class by reference.
+class PointDrag {
+	constructor(point) { // point : Point2d
+		this.point = point;
+	}
+	doDrag(delta) {
+		this.point.x += delta.x;
+		this.point.y += delta.y;
+	}
+	doMouseUp(e) { return null; }
+}
+
+// Takes in a canvas and adds the ability to click and drag the offset point.
+// scaleX and scaleY are allowed to be locked or not-locked as the scroll events
+// must be handled by the user of this class.
+//
+// offset.x and offset.y are defined in reference to the model-scale, not the viewport.
+// Thus to move the viewport you need to use offset.x * scaleX, etc.
+//
+// scaleX and scaleY aren't automatically applied to the rendering context because
+// differing x and y scales mess up the line width rendering.
+class ClickDrag {
+	constructor(canvas) {
+ 		canvas.addEventListener('selectstart', function(e) { e.preventDefault(); return false; }, false);
+  	canvas.addEventListener('mousemove', this.handleMouseMove.bind(this), true);
+		canvas.addEventListener('mousedown', this.handleMouseDown.bind(this), true);
+		canvas.addEventListener('mouseup', this.handleMouseUp.bind(this), true);
+		this.canvas = canvas;
+		this.dragger = null;
+		this.offset = new Point2d(0, 0);
+		this.scaleX = 1.0;
+		this.scaleY = 1.0;
+		this.old_point = null;
+		this.on_redraw = null;
+	}
+	translateContext(ctx) { // ctx : CanvasRenderingContext2D 
+		ctx.translate(this.offset.x * this.scaleX, this.offset.y * this.scaleY);
+	}
+	handleMouseMove(e) { // e : MouseEvent
+		let pos = new Point2d(e.offsetX / this.scaleX, e.offsetY / this.scaleY);
+		if (this.old_point !== null && this.dragger !== null) {
+			this.dragger.doDrag(pos.sub(this.old_point));
+			if (this.on_redraw !== null) { this.on_redraw(); }
+		}
+		this.old_point = pos;
+  }
+	get width() { return this.canvas.width; }
+	handleMouseDown(e) { // e : MouseEvent
+		this.dragger = new PointDrag(this.offset);
+	}
+	handleMouseUp(e) { // e : MouseEvent
+		if (this.dragger === null) { return; }
+		if (this.dragger.doMouseUp !== undefined) {
+			this.dragger = this.dragger.doMouseUp(e);
+			if (this.on_redraw !== null) { this.on_redraw(); }
+		}
+	}
+	multiplyScale(evt, dx, dy) {
+		let x_cur = evt.offsetX / this.scaleX - this.offset.x;
+		let y_cur = evt.offsetY / this.scaleY - this.offset.y;
+		this.scaleX *= dx;
+		this.scaleY *= dy;
+		this.offset.x = evt.offsetX / this.scaleX - x_cur;
+		this.offset.y = evt.offsetY / this.scaleY - y_cur;
+		if (this.on_redraw !== null) { this.on_redraw(); }
+	}
+};
+
+// This represents a particular downsampling of a timeseries dataset.
+// For the base level, data = min = max.
+// This is required
+class MipMapLevel {
+	// All arrays should be the same size.
+	constructor(data, min, max, scale) { // data : Float32Array, min : Float32Array, max : Float32Array, scale : Integer
+		this.data = data;
+		this.min = min;
+		this.max = max;
+		this.scale = scale;
+	}
+	get length() { return this.data.length; }
+	// Uses box filter to downsample. Guassian may be an improvement.
+	downsample() {
+		let new_length = (this.data.length / 2) | 0;
+		let data = new Float32Array(new_length);
+		let min = new Float32Array(new_length);
+		let max = new Float32Array(new_length);
+		for (let i = 0; i < new_length; i++) {
+			let i1 = i * 2;
+			let i2 = i1 + 1
+			data[i] = (this.data[i1] + this.data[i2]) / 2.0;
+			min[i] = Math.min(this.min[i1], this.min[i2]);
+			max[i] = Math.max(this.max[i1], this.max[i2]);
+		}
+		return new MipMapLevel(data, min, max, this.scale * 2);
+	}
+	static makeBaseLevel(data) { // data : Float32Array
+		return new MipMapLevel(data, data, data, 1);
+	}
+	clipv(v) { // v : Numeric
+		return Math.min(Math.max(v|0, 0), this.length - 1);
+	}
+	draw(ctx, clickDrag) { // ctx : CanvasRenderingContext2D, clickDrag : ClickDrag
+		let scalex = clickDrag.scaleX * this.scale;
+		let scaley = clickDrag.scaleY;
+		let stx = -clickDrag.offset.x / this.scale;
+		let edx = stx + clickDrag.width / scalex;
+		let sti = this.clipv(stx - 2);
+		let edi = this.clipv(edx + 2);
+		ctx.beginPath();
+		ctx.fillStyle="#00ff00";
+		ctx.moveTo(sti * scalex, scaley * this.min[sti]);
+		for (let i = sti + 1; i <= edi; i++) {
+			ctx.lineTo(i * scalex, scaley * this.min[i]);
+		}
+		for (let i = edi; i >= sti; --i) {
+			ctx.lineTo(i * scalex, scaley * this.max[i]);
+		}
+		ctx.fill();
+		ctx.closePath();
+
+		ctx.beginPath();
+		ctx.strokeStyle="#008f00";
+		ctx.moveTo(sti * scalex, scaley * this.data[sti]);
+		for (let i = sti + 1; i <= edi; i++) {
+			ctx.lineTo(i * scalex, scaley * this.data[i]);
+		}
+		ctx.stroke();
+		ctx.closePath();
+	}
+};
+
+// This class represents all downsampled data levels.
+// This must only be used for descrite time-series data.
+class MipMapper {
+	constructor(samples) { // samples : Float32Array
+		this.levels = [];
+		let level = MipMapLevel.makeBaseLevel(samples);
+		this.levels.push(level);
+		while (level.length > 2) {
+			level = level.downsample();
+			this.levels.push(level);
+		}
+	}
+	// Find the level such that samples are spaced at most 2 pixels apart
+	getLevel(scale) { // scale : Float
+		let level = this.levels[0];
+		for (let i = 0; i < this.levels.length; ++i) {
+			// Someone who understands nyquist could probably improve this.
+			if (this.levels[i].scale * scale <= 4.0) {
+				level = this.levels[i];
+			}
+		}
+		return level;
+	}
+}
+
+// Custom HTML element for x-responsive-plotter.
+// This should be the main entry-point for this code.
+class ResponsivePlotter extends HTMLElement {
+	createdCallback() {
+		this.data = null;
+		this.canvas = document.createElement("canvas");
+		this.canvas.style["background"] = "inherit";
+		this.canvas.addEventListener("mousewheel", this.doScroll.bind(this), false);
+		this.clickDrag = new ClickDrag(this.canvas);
+		this.clickDrag.on_redraw = this.doRedraw.bind(this);
+		this.clickDrag.offset.y = 160; //320;
+		this.updateInnerData();
+		this.appendChild(this.canvas);
+	}
+	doScroll(e) {
+		let factor = (e.wheelDelta < 0) ? 0.9 : 1.1;
+		this.clickDrag.multiplyScale(e, e.shiftKey ? 1.0 : factor, e.shiftKey ? factor : 1.0);
+		e.preventDefault();
+	}
+	doRedraw() {
+		this.redraw();
+	}
+	updateInnerData() {
+		this.canvas.width = this.getAttribute("width") || 640;
+		this.canvas.height = this.getAttribute("height") || 480;
+		fetch_ArrayBuffer(this.getAttribute("data")).then(this.dataUpdated.bind(this));
+		this.redraw();
+	}
+	attributeChangedCallback(attrName, oldVal, newVal) {
+		if (attrName == "width") {
+			this.canvas.width = this.getAttribute("width") || 640;
+			this.redraw();
+		} else if (attrName == "height") {
+			this.canvas.width = this.getAttribute("height") || 480;
+			this.redraw();
+		} else if (attrName == "data") {
+			// Should this clear out the canvas if a different url is selected?
+			// Well it does.
+			this.data = null;
+			fetch_ArrayBuffer(this.getAttribute("data")).then(this.dataUpdated.bind(this));
+		}
+	}
+	dataUpdated(data) { // data : ArrayBuffer
+		this.data = new MipMapper(new Float32Array(data));
+		this.redraw();
+	}
+	redraw() {
+		let ctx = this.canvas.getContext('2d');
+		ctx.clearRect(0, 0, this.canvas.width, this.canvas.height);
+		ctx.save();
+		this.clickDrag.translateContext(ctx);
+		if (this.data !== null) {
+			let level = this.data.getLevel(this.clickDrag.scaleX);
+			level.draw(ctx, this.clickDrag);
+		}
+		ctx.restore();
+	}
+};
+
+
+// TODO(parker): This is chrome-specific v0 version of this switch to v1 when available.
+document.registerElement('x-responsive-plotter', ResponsivePlotter);
+})();
diff --git a/y2016/plotting/test.html b/y2016/plotting/test.html
new file mode 100644
index 0000000..df278b0
--- /dev/null
+++ b/y2016/plotting/test.html
@@ -0,0 +1,12 @@
+<!DOCTYPE html>
+<html>
+	<head>
+		<meta charset="UTF-8">
+		<script src="/responsive_plotter.js" type="text/javascript"></script>
+	</head>
+
+	<body style=>
+		<x-responsive-plotter width=800 data="/test_data" style="background: lightblue;">
+		</x-responsive-plotter>
+	</body>
+</html>
diff --git a/y2016/plotting/test.rb b/y2016/plotting/test.rb
new file mode 100644
index 0000000..9f2f58a
--- /dev/null
+++ b/y2016/plotting/test.rb
@@ -0,0 +1,29 @@
+require "sinatra"
+
+# Must use sinatra server for this because fetch() in javascript
+# cannot load from the filesystem.
+get '/test.html' do
+	File.read("./test.html")
+end
+
+get '/responsive_plotter.js' do
+	content_type 'text/javascript'
+	File.read("./responsive_plotter.js")
+end
+
+get '/test_data' do
+	content_type 'binary/octet-stream'
+	data = ""
+	# Use ./test_data if it exists. Otherwise random data.
+	if (File.exists?("./test_data"))
+		data = File.read("./test_data")
+	else
+		1000.times do
+			data += (1024.times.collect do |i|
+				(rand() * 480  - 160)
+			end.pack("F*"))
+		end
+	end
+	data
+end
+
diff --git a/y2016/wpilib/wpilib_interface.cc b/y2016/wpilib/wpilib_interface.cc
index acf820f..d7fc261 100644
--- a/y2016/wpilib/wpilib_interface.cc
+++ b/y2016/wpilib/wpilib_interface.cc
@@ -3,6 +3,7 @@
 #include <unistd.h>
 #include <inttypes.h>
 
+#include <chrono>
 #include <thread>
 #include <mutex>
 #include <functional>
@@ -282,8 +283,8 @@
 
     dma_synchronizer_->Start();
 
-    ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
-                                        ::aos::time::Time::InMS(4));
+    ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
+                                        ::std::chrono::milliseconds(4));
 
     ::aos::SetCurrentThreadRealtimePriority(40);
     while (run_) {
@@ -472,8 +473,8 @@
     ::aos::SetCurrentThreadName("Solenoids");
     ::aos::SetCurrentThreadRealtimePriority(27);
 
-    ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(20),
-                                        ::aos::time::Time::InMS(1));
+    ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(20),
+                                        ::std::chrono::milliseconds(1));
 
     while (run_) {
       {
diff --git a/y2016_bot3/BUILD b/y2016_bot3/BUILD
new file mode 100644
index 0000000..1d89c1a
--- /dev/null
+++ b/y2016_bot3/BUILD
@@ -0,0 +1,53 @@
+load('/aos/downloader/downloader', 'aos_downloader')
+
+cc_binary(
+  name = 'joystick_reader',
+  srcs = [
+    'joystick_reader.cc',
+  ],
+  deps = [
+    '//aos/common/actions:action_lib',
+    '//aos/common/logging',
+    '//aos/common/util:log_interval',
+    '//aos/common:time',
+    '//aos/input:joystick_input',
+    '//aos/linux_code:init',
+    '//frc971/autonomous:auto_queue',
+    '//frc971/control_loops/drivetrain:drivetrain_queue',
+    '//frc971/queues:gyro',
+    '//y2016_bot3/actors:autonomous_action_lib',
+    '//y2016_bot3/control_loops/intake:intake_lib',
+    '//y2016_bot3/control_loops/intake:intake_queue',
+    '//y2016_bot3/queues:ball_detector',
+  ],
+)
+
+aos_downloader(
+  name = 'download',
+  start_srcs = [
+    ':joystick_reader',
+    '//aos:prime_start_binaries',
+    '//y2016_bot3/control_loops/drivetrain:drivetrain',
+    '//y2016_bot3/control_loops/intake:intake',
+    '//y2016_bot3/actors:autonomous_action',
+    '//y2016_bot3/wpilib:wpilib_interface',
+  ],
+  srcs = [
+    '//aos:prime_binaries',
+  ],
+)
+
+aos_downloader(
+  name = 'download_stripped',
+  start_srcs = [
+    ':joystick_reader.stripped',
+    '//aos:prime_start_binaries_stripped',
+    '//y2016_bot3/control_loops/drivetrain:drivetrain.stripped',
+    '//y2016_bot3/control_loops/intake:intake.stripped',
+    '//y2016_bot3/actors:autonomous_action.stripped',
+    '//y2016_bot3/wpilib:wpilib_interface.stripped',
+  ],
+  srcs = [
+    '//aos:prime_binaries_stripped',
+  ],
+)
diff --git a/y2016_bot3/actors/BUILD b/y2016_bot3/actors/BUILD
new file mode 100644
index 0000000..6453f13
--- /dev/null
+++ b/y2016_bot3/actors/BUILD
@@ -0,0 +1,102 @@
+package(default_visibility = ['//visibility:public'])
+
+load('/aos/build/queues', 'queue_library')
+
+filegroup(
+  name = 'binaries',
+  srcs = [
+    ':drivetrain_action',
+    ':autonomous_action',
+  ],
+)
+
+queue_library(
+  name = 'drivetrain_action_queue',
+  srcs = [
+    'drivetrain_action.q',
+  ],
+  deps = [
+    '//aos/common/actions:action_queue',
+  ],
+)
+
+cc_library(
+  name = 'drivetrain_action_lib',
+  srcs = [
+    'drivetrain_actor.cc',
+  ],
+  hdrs = [
+    'drivetrain_actor.h',
+  ],
+  deps = [
+    ':drivetrain_action_queue',
+    '//aos/common:time',
+    '//aos/common:math',
+    '//aos/common/util:phased_loop',
+    '//aos/common/logging',
+    '//aos/common/actions:action_lib',
+    '//aos/common/logging:queue_logging',
+    '//aos/common/util:trapezoid_profile',
+    '//frc971/control_loops/drivetrain:drivetrain_queue',
+    '//frc971/control_loops:state_feedback_loop',
+    '//third_party/eigen',
+    '//y2016_bot3/control_loops/intake:intake_lib',
+    '//y2016_bot3/control_loops/drivetrain:drivetrain_base',
+    '//y2016_bot3/control_loops/drivetrain:polydrivetrain_plants',
+  ],
+)
+
+cc_binary(
+  name = 'drivetrain_action',
+  srcs = [
+    'drivetrain_actor_main.cc',
+  ],
+  deps = [
+    ':drivetrain_action_lib',
+    ':drivetrain_action_queue',
+    '//aos/linux_code:init',
+  ],
+)
+
+queue_library(
+  name = 'autonomous_action_queue',
+  srcs = [
+    'autonomous_action.q',
+  ],
+  deps = [
+    '//aos/common/actions:action_queue',
+  ],
+)
+
+cc_library(
+  name = 'autonomous_action_lib',
+  srcs = [
+    'autonomous_actor.cc',
+  ],
+  hdrs = [
+    'autonomous_actor.h',
+  ],
+  deps = [
+    ':autonomous_action_queue',
+    '//aos/common/util:phased_loop',
+    '//aos/common/logging',
+    '//aos/common/actions:action_lib',
+    '//frc971/control_loops/drivetrain:drivetrain_queue',
+    '//y2016_bot3/queues:ball_detector',
+    '//y2016_bot3/control_loops/intake:intake_queue',
+    '//y2016_bot3/control_loops/drivetrain:drivetrain_base',
+    '//y2016_bot3/queues:profile_params',
+  ],
+)
+
+cc_binary(
+  name = 'autonomous_action',
+  srcs = [
+    'autonomous_actor_main.cc',
+  ],
+  deps = [
+    ':autonomous_action_lib',
+    ':autonomous_action_queue',
+    '//aos/linux_code:init',
+  ],
+)
diff --git a/y2016_bot3/actors/autonomous_action.q b/y2016_bot3/actors/autonomous_action.q
new file mode 100644
index 0000000..37e4866
--- /dev/null
+++ b/y2016_bot3/actors/autonomous_action.q
@@ -0,0 +1,29 @@
+package y2016_bot3.actors;
+
+import "aos/common/actions/actions.q";
+
+message AutonomousMode {
+  // Mode read from the mode setting sensors.
+  int32_t mode;
+};
+
+queue AutonomousMode auto_mode;
+
+struct AutonomousActionParams {
+  // The mode from the sensors when auto starts.
+  int32_t mode;
+};
+
+queue_group AutonomousActionQueueGroup {
+  implements aos.common.actions.ActionQueueGroup;
+
+  message Goal {
+    uint32_t run;
+    AutonomousActionParams params;
+  };
+
+  queue Goal goal;
+  queue aos.common.actions.Status status;
+};
+
+queue_group AutonomousActionQueueGroup autonomous_action;
diff --git a/y2016_bot3/actors/autonomous_actor.cc b/y2016_bot3/actors/autonomous_actor.cc
new file mode 100644
index 0000000..d6263a7
--- /dev/null
+++ b/y2016_bot3/actors/autonomous_actor.cc
@@ -0,0 +1,358 @@
+#include "y2016_bot3/actors/autonomous_actor.h"
+
+#include <inttypes.h>
+
+#include <cmath>
+
+#include "aos/common/util/phased_loop.h"
+#include "aos/common/logging/logging.h"
+
+#include "frc971/control_loops/drivetrain/drivetrain.q.h"
+#include "y2016_bot3/control_loops/drivetrain/drivetrain_base.h"
+#include "y2016_bot3/control_loops/intake/intake.q.h"
+#include "y2016_bot3/actors/autonomous_action.q.h"
+#include "y2016_bot3/queues/ball_detector.q.h"
+
+namespace y2016_bot3 {
+namespace actors {
+using ::frc971::control_loops::drivetrain_queue;
+
+namespace {
+const ProfileParameters kLowBarDrive = {1.3, 2.5};
+}  // namespace
+
+AutonomousActor::AutonomousActor(actors::AutonomousActionQueueGroup *s)
+    : aos::common::actions::ActorBase<actors::AutonomousActionQueueGroup>(s),
+      dt_config_(control_loops::drivetrain::GetDrivetrainConfig()),
+      initial_drivetrain_({0.0, 0.0}) {}
+
+void AutonomousActor::ResetDrivetrain() {
+  LOG(INFO, "resetting the drivetrain\n");
+  drivetrain_queue.goal.MakeWithBuilder()
+      .control_loop_driving(false)
+      .steering(0.0)
+      .throttle(0.0)
+      .left_goal(initial_drivetrain_.left)
+      .left_velocity_goal(0)
+      .right_goal(initial_drivetrain_.right)
+      .right_velocity_goal(0)
+      .Send();
+}
+
+void AutonomousActor::StartDrive(double distance, double angle,
+                                 ProfileParameters linear) {
+  {
+    LOG(INFO, "Driving distance %f, angle %f\n", distance, angle);
+    {
+      const double dangle = angle * dt_config_.robot_radius;
+      initial_drivetrain_.left += distance - dangle;
+      initial_drivetrain_.right += distance + dangle;
+    }
+
+    auto drivetrain_message = drivetrain_queue.goal.MakeMessage();
+    drivetrain_message->control_loop_driving = true;
+    drivetrain_message->steering = 0.0;
+    drivetrain_message->throttle = 0.0;
+    drivetrain_message->left_goal = initial_drivetrain_.left;
+    drivetrain_message->left_velocity_goal = 0;
+    drivetrain_message->right_goal = initial_drivetrain_.right;
+    drivetrain_message->right_velocity_goal = 0;
+    drivetrain_message->linear = linear;
+
+    LOG_STRUCT(DEBUG, "drivetrain_goal", *drivetrain_message);
+
+    drivetrain_message.Send();
+  }
+}
+
+void AutonomousActor::InitializeEncoders() {
+  drivetrain_queue.status.FetchAnother();
+  initial_drivetrain_.left = drivetrain_queue.status->estimated_left_position;
+  initial_drivetrain_.right = drivetrain_queue.status->estimated_right_position;
+}
+
+void AutonomousActor::WaitUntilDoneOrCanceled(
+    ::std::unique_ptr<aos::common::actions::Action> action) {
+  if (!action) {
+    LOG(ERROR, "No action, not waiting\n");
+    return;
+  }
+
+  ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
+                                      ::aos::time::Time::InMS(5) / 2);
+  while (true) {
+    // Poll the running bit and see if we should cancel.
+    phased_loop.SleepUntilNext();
+    if (!action->Running() || ShouldCancel()) {
+      return;
+    }
+  }
+}
+
+bool AutonomousActor::WaitForDriveNear(double distance, double angle) {
+  ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
+                                      ::aos::time::Time::InMS(5) / 2);
+  constexpr double kPositionTolerance = 0.02;
+  constexpr double kProfileTolerance = 0.001;
+
+  while (true) {
+    if (ShouldCancel()) {
+      return false;
+    }
+    phased_loop.SleepUntilNext();
+    drivetrain_queue.status.FetchLatest();
+    if (drivetrain_queue.status.get()) {
+      const double left_profile_error =
+          (initial_drivetrain_.left -
+           drivetrain_queue.status->profiled_left_position_goal);
+      const double right_profile_error =
+          (initial_drivetrain_.right -
+           drivetrain_queue.status->profiled_right_position_goal);
+
+      const double left_error =
+          (initial_drivetrain_.left -
+           drivetrain_queue.status->estimated_left_position);
+      const double right_error =
+          (initial_drivetrain_.right -
+           drivetrain_queue.status->estimated_right_position);
+
+      const double profile_distance_to_go =
+          (left_profile_error + right_profile_error) / 2.0;
+      const double profile_angle_to_go =
+          (right_profile_error - left_profile_error) /
+          (dt_config_.robot_radius * 2.0);
+
+      const double distance_to_go = (left_error + right_error) / 2.0;
+      const double angle_to_go =
+          (right_error - left_error) / (dt_config_.robot_radius * 2.0);
+
+      if (::std::abs(profile_distance_to_go) < distance + kProfileTolerance &&
+          ::std::abs(profile_angle_to_go) < angle + kProfileTolerance &&
+          ::std::abs(distance_to_go) < distance + kPositionTolerance &&
+          ::std::abs(angle_to_go) < angle + kPositionTolerance) {
+        LOG(INFO, "Closer than %f distance, %f angle\n", distance, angle);
+        return true;
+      }
+    }
+  }
+}
+
+bool AutonomousActor::WaitForDriveProfileDone() {
+  ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
+                                      ::aos::time::Time::InMS(5) / 2);
+  constexpr double kProfileTolerance = 0.001;
+
+  while (true) {
+    if (ShouldCancel()) {
+      return false;
+    }
+    phased_loop.SleepUntilNext();
+    drivetrain_queue.status.FetchLatest();
+    if (drivetrain_queue.status.get()) {
+      if (::std::abs(drivetrain_queue.status->profiled_left_position_goal -
+                     initial_drivetrain_.left) < kProfileTolerance &&
+          ::std::abs(drivetrain_queue.status->profiled_right_position_goal -
+                     initial_drivetrain_.right) < kProfileTolerance) {
+        LOG(INFO, "Finished drive\n");
+        return true;
+      }
+    }
+  }
+}
+
+bool AutonomousActor::IsDriveDone() {
+  constexpr double kPositionTolerance = 0.02;
+  constexpr double kVelocityTolerance = 0.10;
+  constexpr double kProfileTolerance = 0.001;
+
+  if (drivetrain_queue.status.get()) {
+    if (::std::abs(drivetrain_queue.status->profiled_left_position_goal -
+                   initial_drivetrain_.left) < kProfileTolerance &&
+        ::std::abs(drivetrain_queue.status->profiled_right_position_goal -
+                   initial_drivetrain_.right) < kProfileTolerance &&
+        ::std::abs(drivetrain_queue.status->estimated_left_position -
+                   initial_drivetrain_.left) < kPositionTolerance &&
+        ::std::abs(drivetrain_queue.status->estimated_right_position -
+                   initial_drivetrain_.right) < kPositionTolerance &&
+        ::std::abs(drivetrain_queue.status->estimated_left_velocity) <
+            kVelocityTolerance &&
+        ::std::abs(drivetrain_queue.status->estimated_right_velocity) <
+            kVelocityTolerance) {
+      LOG(INFO, "Finished drive\n");
+      return true;
+    }
+  }
+  return false;
+}
+
+bool AutonomousActor::WaitForDriveDone() {
+  ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
+                                      ::aos::time::Time::InMS(5) / 2);
+
+  while (true) {
+    if (ShouldCancel()) {
+      return false;
+    }
+    phased_loop.SleepUntilNext();
+    drivetrain_queue.status.FetchLatest();
+    if (IsDriveDone()) {
+      return true;
+    }
+  }
+}
+
+void AutonomousActor::MoveIntake(double intake_goal,
+                                 const ProfileParameters intake_params,
+                                 bool traverse_up, double roller_power) {
+
+  auto new_intake_goal =
+      ::y2016_bot3::control_loops::intake_queue.goal.MakeMessage();
+
+  new_intake_goal->angle_intake = intake_goal;
+
+  new_intake_goal->max_angular_velocity_intake =
+      intake_params.max_velocity;
+
+  new_intake_goal->max_angular_acceleration_intake =
+      intake_params.max_acceleration;
+
+  new_intake_goal->voltage_top_rollers = roller_power;
+  new_intake_goal->voltage_bottom_rollers = roller_power;
+
+  new_intake_goal->traverse_unlatched = true;
+  new_intake_goal->traverse_down = !traverse_up;
+
+  if (!new_intake_goal.Send()) {
+    LOG(ERROR, "Sending intake goal failed.\n");
+  }
+}
+
+bool AutonomousActor::IntakeDone() {
+  control_loops::intake_queue.status.FetchAnother();
+
+  constexpr double kProfileError = 1e-5;
+  constexpr double kEpsilon = 0.15;
+
+  if (control_loops::intake_queue.status->state < 12 ||
+      control_loops::intake_queue.status->state == 16) {
+    LOG(ERROR, "Intake no longer running, aborting action\n");
+    return true;
+  }
+
+  if (::std::abs(control_loops::intake_queue.status->intake.goal_angle -
+                 intake_goal_.intake) < kProfileError &&
+      ::std::abs(control_loops::intake_queue.status->intake
+                     .goal_angular_velocity) < kProfileError) {
+    LOG(DEBUG, "Profile done.\n");
+    if (::std::abs(control_loops::intake_queue.status->intake.angle -
+                   intake_goal_.intake) < kEpsilon &&
+        ::std::abs(control_loops::intake_queue.status->intake
+                       .angular_velocity) < kEpsilon) {
+      LOG(INFO, "Near goal, done.\n");
+      return true;
+    }
+  }
+  return false;
+}
+
+void AutonomousActor::WaitForIntake() {
+  while (true) {
+    if (ShouldCancel()) return;
+    if (IntakeDone()) return;
+  }
+}
+
+void AutonomousActor::LowBarDrive() {
+  StartDrive(-5.5, 0.0, kLowBarDrive);
+
+  if (!WaitForDriveNear(5.3, 0.0)) return;
+
+  if (!WaitForDriveNear(5.0, 0.0)) return;
+
+  StartDrive(0.0, 0.0, kLowBarDrive);
+
+  if (!WaitForDriveNear(3.0, 0.0)) return;
+
+  StartDrive(0.0, 0.0, kLowBarDrive);
+
+  if (!WaitForDriveNear(1.0, 0.0)) return;
+
+  StartDrive(0, -M_PI / 4.0 - 0.2, kLowBarDrive);
+}
+
+void AutonomousActor::WaitForBallOrDriveDone() {
+  ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
+                                      ::aos::time::Time::InMS(5) / 2);
+  while (true) {
+    if (ShouldCancel()) {
+      return;
+    }
+    phased_loop.SleepUntilNext();
+    drivetrain_queue.status.FetchLatest();
+    if (IsDriveDone()) {
+      return;
+    }
+
+    ::y2016_bot3::sensors::ball_detector.FetchLatest();
+    if (::y2016_bot3::sensors::ball_detector.get()) {
+      const bool ball_detected =
+          ::y2016_bot3::sensors::ball_detector->voltage > 2.5;
+      if (ball_detected) {
+        return;
+      }
+    }
+  }
+}
+
+void AutonomousActor::WaitForBall() {
+  while (true) {
+    ::y2016_bot3::sensors::ball_detector.FetchAnother();
+    if (::y2016_bot3::sensors::ball_detector.get()) {
+      const bool ball_detected =
+          ::y2016_bot3::sensors::ball_detector->voltage > 2.5;
+      if (ball_detected) {
+        return;
+      }
+      if (ShouldCancel()) return;
+    }
+  }
+}
+
+bool AutonomousActor::RunAction(const actors::AutonomousActionParams &params) {
+  aos::time::Time start_time = aos::time::Time::Now();
+  LOG(INFO, "Starting autonomous action with mode %" PRId32 "\n", params.mode);
+
+  InitializeEncoders();
+  ResetDrivetrain();
+
+  switch (params.mode) {
+    case 0:
+    default:
+      // TODO: Write auto code
+      LOG(ERROR, "Uhh... someone implement this please :)");
+      break;
+  }
+
+  if (!WaitForDriveDone()) return true;
+
+  LOG(INFO, "Done %f\n", (aos::time::Time::Now() - start_time).ToSeconds());
+
+  ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
+                                      ::aos::time::Time::InMS(5) / 2);
+
+  while (!ShouldCancel()) {
+    phased_loop.SleepUntilNext();
+  }
+  LOG(DEBUG, "Done running\n");
+
+  return true;
+}
+
+::std::unique_ptr<AutonomousAction> MakeAutonomousAction(
+    const ::y2016_bot3::actors::AutonomousActionParams &params) {
+  return ::std::unique_ptr<AutonomousAction>(
+      new AutonomousAction(&::y2016_bot3::actors::autonomous_action, params));
+}
+
+}  // namespace actors
+}  // namespace y2016_bot3
diff --git a/y2016_bot3/actors/autonomous_actor.h b/y2016_bot3/actors/autonomous_actor.h
new file mode 100644
index 0000000..607e833
--- /dev/null
+++ b/y2016_bot3/actors/autonomous_actor.h
@@ -0,0 +1,90 @@
+#ifndef Y2016_BOT3_ACTORS_AUTONOMOUS_ACTOR_H_
+#define Y2016_BOT3_ACTORS_AUTONOMOUS_ACTOR_H_
+
+#include <memory>
+
+#include "aos/common/actions/actor.h"
+#include "aos/common/actions/actions.h"
+
+#include "y2016_bot3/actors/autonomous_action.q.h"
+#include "frc971/control_loops/drivetrain/drivetrain.q.h"
+#include "frc971/control_loops/drivetrain/drivetrain_config.h"
+
+namespace y2016_bot3 {
+namespace actors {
+using ::frc971::ProfileParameters;
+
+class AutonomousActor
+    : public ::aos::common::actions::ActorBase<AutonomousActionQueueGroup> {
+ public:
+  explicit AutonomousActor(AutonomousActionQueueGroup *s);
+
+  bool RunAction(const actors::AutonomousActionParams &params) override;
+
+ private:
+  void ResetDrivetrain();
+  void InitializeEncoders();
+  void WaitUntilDoneOrCanceled(::std::unique_ptr<aos::common::actions::Action>
+      action);
+  void StartDrive(double distance, double angle,
+                  ::frc971::ProfileParameters linear);
+  // Waits for the drive motion to finish.  Returns true if it succeeded, and
+  // false if it cancels.
+  bool WaitForDriveDone();
+  void WaitForBallOrDriveDone();
+
+  void StealAndMoveOverBy(double distance);
+
+  // Returns true if the drive has finished.
+  bool IsDriveDone();
+
+  // Waits until the profile and distance is within distance and angle of the
+  // goal.  Returns true on success, and false when canceled.
+  bool WaitForDriveNear(double distance, double angle);
+
+  const ::frc971::control_loops::drivetrain::DrivetrainConfig dt_config_;
+
+  // Initial drivetrain positions.
+  struct InitialDrivetrain {
+    double left;
+    double right;
+  };
+  InitialDrivetrain initial_drivetrain_;
+
+  // Internal struct holding superstructure goals sent by autonomous to the
+  // loop.
+  struct IntakeGoal {
+    double intake;
+  };
+  IntakeGoal intake_goal_;
+
+  void MoveIntake(double intake, const ProfileParameters intake_params,
+                  bool traverse_up, double roller_power);
+  void WaitForIntakeProfile();
+  void WaitForIntakeLow();
+  void WaitForIntake();
+  bool IntakeDone();
+  bool WaitForDriveProfileDone();
+
+  void WaitForBall();
+
+  void LowBarDrive();
+  // Drive to the middle spot over the middle position.  Designed for the rock
+  // wall, rough terain, or ramparts.
+  void MiddleDrive();
+
+  void OneFromMiddleDrive(bool left);
+  void TwoFromMiddleDrive();
+};
+
+typedef ::aos::common::actions::TypedAction<AutonomousActionQueueGroup>
+    AutonomousAction;
+
+// Makes a new AutonomousActor action.
+::std::unique_ptr<AutonomousAction> MakeAutonomousAction(
+    const ::y2016_bot3::actors::AutonomousActionParams &params);
+
+}  // namespace actors
+}  // namespace y2016_bot3
+
+#endif  // Y2016_BOT3_ACTORS_AUTONOMOUS_ACTOR_H_
diff --git a/y2016_bot3/actors/autonomous_actor_main.cc b/y2016_bot3/actors/autonomous_actor_main.cc
new file mode 100644
index 0000000..43cbbe8
--- /dev/null
+++ b/y2016_bot3/actors/autonomous_actor_main.cc
@@ -0,0 +1,18 @@
+#include <stdio.h>
+
+#include "aos/linux_code/init.h"
+#include "y2016_bot3/actors/autonomous_action.q.h"
+#include "y2016_bot3/actors/autonomous_actor.h"
+
+using ::aos::time::Time;
+
+int main(int /*argc*/, char * /*argv*/ []) {
+  ::aos::Init(-1);
+
+  ::y2016_bot3::actors::AutonomousActor autonomous(
+      &::y2016_bot3::actors::autonomous_action);
+  autonomous.Run();
+
+  ::aos::Cleanup();
+  return 0;
+}
diff --git a/y2016_bot3/actors/drivetrain_action.q b/y2016_bot3/actors/drivetrain_action.q
new file mode 100644
index 0000000..7775cad
--- /dev/null
+++ b/y2016_bot3/actors/drivetrain_action.q
@@ -0,0 +1,29 @@
+package y2016_bot3.actors;
+
+import "aos/common/actions/actions.q";
+
+// Parameters to send with start.
+struct DrivetrainActionParams {
+  double left_initial_position;
+  double right_initial_position;
+  double y_offset;
+  double theta_offset;
+  double maximum_velocity;
+  double maximum_acceleration;
+  double maximum_turn_velocity;
+  double maximum_turn_acceleration;
+};
+
+queue_group DrivetrainActionQueueGroup {
+  implements aos.common.actions.ActionQueueGroup;
+
+  message Goal {
+    uint32_t run;
+    DrivetrainActionParams params;
+  };
+
+  queue Goal goal;
+  queue aos.common.actions.Status status;
+};
+
+queue_group DrivetrainActionQueueGroup drivetrain_action;
diff --git a/y2016_bot3/actors/drivetrain_actor.cc b/y2016_bot3/actors/drivetrain_actor.cc
new file mode 100644
index 0000000..686c50f
--- /dev/null
+++ b/y2016_bot3/actors/drivetrain_actor.cc
@@ -0,0 +1,181 @@
+#include "y2016_bot3/actors/drivetrain_actor.h"
+
+#include <functional>
+#include <numeric>
+
+#include <Eigen/Dense>
+
+#include "aos/common/util/phased_loop.h"
+#include "aos/common/logging/logging.h"
+#include "aos/common/util/trapezoid_profile.h"
+#include "aos/common/commonmath.h"
+#include "aos/common/time.h"
+
+#include "y2016_bot3/actors/drivetrain_actor.h"
+#include "y2016_bot3/control_loops/drivetrain/drivetrain_dog_motor_plant.h"
+#include "frc971/control_loops/drivetrain/drivetrain.q.h"
+
+namespace y2016_bot3 {
+namespace actors {
+
+DrivetrainActor::DrivetrainActor(actors::DrivetrainActionQueueGroup *s)
+    : aos::common::actions::ActorBase<actors::DrivetrainActionQueueGroup>(s),
+      loop_(::y2016_bot3::control_loops::drivetrain::MakeDrivetrainLoop()) {
+  loop_.set_controller_index(3);
+}
+
+bool DrivetrainActor::RunAction(const actors::DrivetrainActionParams &params) {
+  static const auto K = loop_.K();
+
+  const double yoffset = params.y_offset;
+  const double turn_offset =
+      params.theta_offset * control_loops::drivetrain::kRobotRadius;
+  LOG(INFO, "Going to move %f and turn %f\n", yoffset, turn_offset);
+
+  // Measured conversion to get the distance right.
+  ::aos::util::TrapezoidProfile profile(::aos::time::Time::InMS(5));
+  ::aos::util::TrapezoidProfile turn_profile(::aos::time::Time::InMS(5));
+  const double goal_velocity = 0.0;
+  const double epsilon = 0.01;
+  ::Eigen::Matrix<double, 2, 1> left_goal_state, right_goal_state;
+
+  profile.set_maximum_acceleration(params.maximum_acceleration);
+  profile.set_maximum_velocity(params.maximum_velocity);
+  turn_profile.set_maximum_acceleration(
+      params.maximum_turn_acceleration *
+      control_loops::drivetrain::kRobotRadius);
+  turn_profile.set_maximum_velocity(params.maximum_turn_velocity *
+                                    control_loops::drivetrain::kRobotRadius);
+
+  while (true) {
+    ::aos::time::PhasedLoopXMS(5, 2500);
+
+    ::frc971::control_loops::drivetrain_queue.status.FetchLatest();
+    if (::frc971::control_loops::drivetrain_queue.status.get()) {
+      const auto &status = *::frc971::control_loops::drivetrain_queue.status;
+      if (::std::abs(status.uncapped_left_voltage -
+                     status.uncapped_right_voltage) > 24) {
+        LOG(DEBUG, "spinning in place\n");
+        // They're more than 24V apart, so stop moving forwards and let it deal
+        // with spinning first.
+        profile.SetGoal(
+            (status.estimated_left_position + status.estimated_right_position -
+             params.left_initial_position - params.right_initial_position) /
+            2.0);
+      } else {
+        static const double divisor = K(0, 0) + K(0, 2);
+        double dx_left, dx_right;
+
+        if (status.uncapped_left_voltage > 12.0) {
+          dx_left = (status.uncapped_left_voltage - 12.0) / divisor;
+        } else if (status.uncapped_left_voltage < -12.0) {
+          dx_left = (status.uncapped_left_voltage + 12.0) / divisor;
+        } else {
+          dx_left = 0;
+        }
+
+        if (status.uncapped_right_voltage > 12.0) {
+          dx_right = (status.uncapped_right_voltage - 12.0) / divisor;
+        } else if (status.uncapped_right_voltage < -12.0) {
+          dx_right = (status.uncapped_right_voltage + 12.0) / divisor;
+        } else {
+          dx_right = 0;
+        }
+
+        double dx;
+
+        if (dx_left == 0 && dx_right == 0) {
+          dx = 0;
+        } else if (dx_left != 0 && dx_right != 0 &&
+                   ::aos::sign(dx_left) != ::aos::sign(dx_right)) {
+          // Both saturating in opposite directions. Don't do anything.
+          LOG(DEBUG, "Saturating opposite ways, not adjusting\n");
+          dx = 0;
+        } else if (::std::abs(dx_left) > ::std::abs(dx_right)) {
+          dx = dx_left;
+        } else {
+          dx = dx_right;
+        }
+
+        if (dx != 0) {
+          LOG(DEBUG, "adjusting goal by %f\n", dx);
+          profile.MoveGoal(-dx);
+        }
+      }
+    } else {
+      // If we ever get here, that's bad and we should just give up
+      LOG(ERROR, "no drivetrain status!\n");
+      return false;
+    }
+
+    const auto drive_profile_goal_state =
+        profile.Update(yoffset, goal_velocity);
+    const auto turn_profile_goal_state = turn_profile.Update(turn_offset, 0.0);
+    left_goal_state = drive_profile_goal_state - turn_profile_goal_state;
+    right_goal_state = drive_profile_goal_state + turn_profile_goal_state;
+
+    if (::std::abs(drive_profile_goal_state(0, 0) - yoffset) < epsilon &&
+        ::std::abs(turn_profile_goal_state(0, 0) - turn_offset) < epsilon) {
+      break;
+    }
+
+    if (ShouldCancel()) return true;
+
+    LOG(DEBUG, "Driving left to %f, right to %f\n",
+        left_goal_state(0, 0) + params.left_initial_position,
+        right_goal_state(0, 0) + params.right_initial_position);
+    ::frc971::control_loops::drivetrain_queue.goal.MakeWithBuilder()
+        .control_loop_driving(true)
+        .highgear(true)
+        .left_goal(left_goal_state(0, 0) + params.left_initial_position)
+        .right_goal(right_goal_state(0, 0) + params.right_initial_position)
+        .left_velocity_goal(left_goal_state(1, 0))
+        .right_velocity_goal(right_goal_state(1, 0))
+        .Send();
+  }
+  if (ShouldCancel()) return true;
+  ::frc971::control_loops::drivetrain_queue.status.FetchLatest();
+
+  while (!::frc971::control_loops::drivetrain_queue.status.get()) {
+    LOG(WARNING,
+        "No previous drivetrain status packet, trying to fetch again\n");
+    ::frc971::control_loops::drivetrain_queue.status.FetchNextBlocking();
+    if (ShouldCancel()) return true;
+  }
+
+  while (true) {
+    if (ShouldCancel()) return true;
+    const double kPositionThreshold = 0.05;
+
+    const double left_error =
+        ::std::abs(::frc971::control_loops::drivetrain_queue.status
+                       ->estimated_left_position -
+                   (left_goal_state(0, 0) + params.left_initial_position));
+    const double right_error =
+        ::std::abs(::frc971::control_loops::drivetrain_queue.status
+                       ->estimated_right_position -
+                   (right_goal_state(0, 0) + params.right_initial_position));
+    const double velocity_error = ::std::abs(
+        ::frc971::control_loops::drivetrain_queue.status->robot_speed);
+    if (left_error < kPositionThreshold && right_error < kPositionThreshold &&
+        velocity_error < 0.2) {
+      break;
+    } else {
+      LOG(DEBUG, "Drivetrain error is %f, %f, %f\n", left_error, right_error,
+          velocity_error);
+    }
+    ::frc971::control_loops::drivetrain_queue.status.FetchNextBlocking();
+  }
+
+  LOG(INFO, "Done moving\n");
+  return true;
+}
+
+::std::unique_ptr<DrivetrainAction> MakeDrivetrainAction(
+    const ::y2016_bot3::actors::DrivetrainActionParams &params) {
+  return ::std::unique_ptr<DrivetrainAction>(
+      new DrivetrainAction(&::y2016_bot3::actors::drivetrain_action, params));
+}
+
+}  // namespace actors
+}  // namespace y2016_bot3
diff --git a/y2016_bot3/actors/drivetrain_actor.h b/y2016_bot3/actors/drivetrain_actor.h
new file mode 100644
index 0000000..ebf3ed5
--- /dev/null
+++ b/y2016_bot3/actors/drivetrain_actor.h
@@ -0,0 +1,36 @@
+#ifndef Y2016_BOT3_ACTORS_DRIVETRAIN_ACTOR_H_
+#define Y2016_BOT3_ACTORS_DRIVETRAIN_ACTOR_H_
+
+#include <memory>
+
+#include "aos/common/actions/actor.h"
+#include "aos/common/actions/actions.h"
+#include "frc971/control_loops/state_feedback_loop.h"
+
+#include "y2016_bot3/actors/drivetrain_action.q.h"
+
+namespace y2016_bot3 {
+namespace actors {
+
+class DrivetrainActor
+    : public ::aos::common::actions::ActorBase<DrivetrainActionQueueGroup> {
+ public:
+  explicit DrivetrainActor(DrivetrainActionQueueGroup *s);
+
+  bool RunAction(const actors::DrivetrainActionParams &params) override;
+
+ private:
+  StateFeedbackLoop<4, 2, 2> loop_;
+};
+
+typedef ::aos::common::actions::TypedAction<DrivetrainActionQueueGroup>
+    DrivetrainAction;
+
+// Makes a new DrivetrainActor action.
+::std::unique_ptr<DrivetrainAction> MakeDrivetrainAction(
+    const ::y2016_bot3::actors::DrivetrainActionParams &params);
+
+}  // namespace actors
+}  // namespace y2016_bot3
+
+#endif
diff --git a/y2016_bot3/actors/drivetrain_actor_main.cc b/y2016_bot3/actors/drivetrain_actor_main.cc
new file mode 100644
index 0000000..41a4d28
--- /dev/null
+++ b/y2016_bot3/actors/drivetrain_actor_main.cc
@@ -0,0 +1,18 @@
+#include <stdio.h>
+
+#include "aos/linux_code/init.h"
+#include "y2016_bot3/actors/drivetrain_action.q.h"
+#include "y2016_bot3/actors/drivetrain_actor.h"
+
+using ::aos::time::Time;
+
+int main(int /*argc*/, char* /*argv*/ []) {
+  ::aos::Init(-1);
+
+  ::y2016_bot3::actors::DrivetrainActor drivetrain(
+      &::y2016_bot3::actors::drivetrain_action);
+  drivetrain.Run();
+
+  ::aos::Cleanup();
+  return 0;
+}
diff --git a/y2016_bot3/control_loops/drivetrain/BUILD b/y2016_bot3/control_loops/drivetrain/BUILD
new file mode 100644
index 0000000..c6e95c4
--- /dev/null
+++ b/y2016_bot3/control_loops/drivetrain/BUILD
@@ -0,0 +1,77 @@
+package(default_visibility = ['//visibility:public'])
+
+load('/aos/build/queues', 'queue_library')
+
+genrule(
+  name = 'genrule_drivetrain',
+  visibility = ['//visibility:private'],
+  cmd = '$(location //y2016_bot3/control_loops/python:drivetrain) $(OUTS)',
+  tools = [
+    '//y2016_bot3/control_loops/python:drivetrain',
+  ],
+  outs = [
+    'drivetrain_dog_motor_plant.h',
+    'drivetrain_dog_motor_plant.cc',
+    'kalman_drivetrain_motor_plant.h',
+    'kalman_drivetrain_motor_plant.cc',
+  ],
+)
+
+genrule(
+  name = 'genrule_polydrivetrain',
+  visibility = ['//visibility:private'],
+  cmd = '$(location //y2016_bot3/control_loops/python:polydrivetrain) $(OUTS)',
+  tools = [
+    '//y2016_bot3/control_loops/python:polydrivetrain',
+  ],
+  outs = [
+    'polydrivetrain_dog_motor_plant.h',
+    'polydrivetrain_dog_motor_plant.cc',
+    'polydrivetrain_cim_plant.h',
+    'polydrivetrain_cim_plant.cc',
+  ],
+)
+
+cc_library(
+  name = 'polydrivetrain_plants',
+  srcs = [
+    'polydrivetrain_dog_motor_plant.cc',
+    'drivetrain_dog_motor_plant.cc',
+    'kalman_drivetrain_motor_plant.cc',
+  ],
+  hdrs = [
+    'polydrivetrain_dog_motor_plant.h',
+    'drivetrain_dog_motor_plant.h',
+    'kalman_drivetrain_motor_plant.h',
+  ],
+  deps = [
+    '//frc971/control_loops:state_feedback_loop',
+  ],
+)
+
+cc_library(
+  name = 'drivetrain_base',
+  srcs = [
+    'drivetrain_base.cc',
+  ],
+  hdrs = [
+    'drivetrain_base.h',
+  ],
+  deps = [
+    ':polydrivetrain_plants',
+    '//frc971/control_loops/drivetrain:drivetrain_config',
+    '//frc971:shifter_hall_effect',
+  ],
+)
+
+cc_binary(
+  name = 'drivetrain',
+  srcs = [
+    'drivetrain_main.cc',
+  ],
+  deps = [
+    ':drivetrain_base',
+    '//aos/linux_code:init',
+    '//frc971/control_loops/drivetrain:drivetrain_lib',
+  ],
+)
diff --git a/y2016_bot3/control_loops/drivetrain/drivetrain_base.cc b/y2016_bot3/control_loops/drivetrain/drivetrain_base.cc
new file mode 100644
index 0000000..cefb1cf
--- /dev/null
+++ b/y2016_bot3/control_loops/drivetrain/drivetrain_base.cc
@@ -0,0 +1,46 @@
+#include "y2016_bot3/control_loops/drivetrain/drivetrain_base.h"
+
+#include "frc971/control_loops/drivetrain/drivetrain_config.h"
+
+#include "frc971/control_loops/state_feedback_loop.h"
+#include "y2016_bot3/control_loops/drivetrain/drivetrain_dog_motor_plant.h"
+#include "y2016_bot3/control_loops/drivetrain/polydrivetrain_dog_motor_plant.h"
+#include "y2016_bot3/control_loops/drivetrain/kalman_drivetrain_motor_plant.h"
+
+using ::frc971::control_loops::drivetrain::DrivetrainConfig;
+
+namespace y2016_bot3 {
+namespace control_loops {
+namespace drivetrain {
+
+using ::frc971::constants::ShifterHallEffect;
+
+const ShifterHallEffect kThreeStateDriveShifter{0.0, 0.0, 0.0, 0.0, 0.25, 0.75};
+
+const DrivetrainConfig &GetDrivetrainConfig() {
+  static DrivetrainConfig kDrivetrainConfig{
+      ::frc971::control_loops::drivetrain::ShifterType::NO_SHIFTER,
+      ::frc971::control_loops::drivetrain::LoopType::CLOSED_LOOP,
+
+      ::y2016_bot3::control_loops::drivetrain::MakeDrivetrainLoop,
+      ::y2016_bot3::control_loops::drivetrain::MakeVelocityDrivetrainLoop,
+      ::y2016_bot3::control_loops::drivetrain::MakeKFDrivetrainLoop,
+
+      drivetrain::kDt,
+      drivetrain::kRobotRadius,
+      drivetrain::kWheelRadius,
+      drivetrain::kV,
+
+      drivetrain::kHighGearRatio,
+      drivetrain::kHighGearRatio,
+      kThreeStateDriveShifter,
+      kThreeStateDriveShifter,
+      true,
+      0.0};
+
+  return kDrivetrainConfig;
+};
+
+}  // namespace drivetrain
+}  // namespace control_loops
+}  // namespace y2016_bot3
diff --git a/y2016_bot3/control_loops/drivetrain/drivetrain_base.h b/y2016_bot3/control_loops/drivetrain/drivetrain_base.h
new file mode 100644
index 0000000..d6a041e
--- /dev/null
+++ b/y2016_bot3/control_loops/drivetrain/drivetrain_base.h
@@ -0,0 +1,24 @@
+#ifndef Y2016_BOT3_CONTROL_LOOPS_DRIVETRAIN_DRIVETRAIN_BASE_H_
+#define Y2016_BOT3_CONTROL_LOOPS_DRIVETRAIN_DRIVETRAIN_BASE_H_
+
+#include "frc971/control_loops/drivetrain/drivetrain_config.h"
+
+namespace y2016_bot3 {
+namespace constants {
+static constexpr double drivetrain_max_speed = 5.0;
+
+// The ratio from the encoder shaft to the drivetrain wheels.
+// TODO(constants): Update these.
+static constexpr double kDrivetrainEncoderRatio = 1.0;
+
+}  // namespace constants
+namespace control_loops {
+namespace drivetrain {
+const ::frc971::control_loops::drivetrain::DrivetrainConfig &
+GetDrivetrainConfig();
+
+}  // namespace drivetrain
+}  // namespace control_loops
+}  // namespace y2016_bot3
+
+#endif  // Y2016_BOT3_CONTROL_LOOPS_DRIVETRAIN_DRIVETRAIN_BASE_H_
diff --git a/y2016_bot3/control_loops/drivetrain/drivetrain_main.cc b/y2016_bot3/control_loops/drivetrain/drivetrain_main.cc
new file mode 100644
index 0000000..3eaccce
--- /dev/null
+++ b/y2016_bot3/control_loops/drivetrain/drivetrain_main.cc
@@ -0,0 +1,15 @@
+#include "aos/linux_code/init.h"
+
+#include "frc971/control_loops/drivetrain/drivetrain.h"
+#include "y2016_bot3/control_loops/drivetrain/drivetrain_base.h"
+
+using ::frc971::control_loops::drivetrain::DrivetrainLoop;
+
+int main() {
+  ::aos::Init();
+  DrivetrainLoop drivetrain(
+      ::y2016_bot3::control_loops::drivetrain::GetDrivetrainConfig());
+  drivetrain.Run();
+  ::aos::Cleanup();
+  return 0;
+}
diff --git a/y2016_bot3/control_loops/intake/BUILD b/y2016_bot3/control_loops/intake/BUILD
new file mode 100644
index 0000000..887a63c
--- /dev/null
+++ b/y2016_bot3/control_loops/intake/BUILD
@@ -0,0 +1,96 @@
+package(default_visibility = ['//visibility:public'])
+
+load('/aos/build/queues', 'queue_library')
+
+queue_library(
+  name = 'intake_queue',
+  srcs = [
+    'intake.q',
+  ],
+  deps = [
+    '//aos/common/controls:control_loop_queues',
+    '//frc971/control_loops:queues',
+  ],
+)
+
+genrule(
+  name = 'genrule_intake',
+  visibility = ['//visibility:private'],
+  cmd = '$(location //y2016_bot3/control_loops/python:intake) $(OUTS)',
+  tools = [
+    '//y2016_bot3/control_loops/python:intake',
+  ],
+  outs = [
+    'intake_plant.h',
+    'intake_plant.cc',
+    'integral_intake_plant.h',
+    'integral_intake_plant.cc',
+  ],
+)
+
+cc_library(
+  name = 'intake_plants',
+  srcs = [
+    'intake_plant.cc',
+    'integral_intake_plant.cc',
+  ],
+  hdrs = [
+    'intake_plant.h',
+    'integral_intake_plant.h',
+  ],
+  deps = [
+    '//frc971/control_loops:state_feedback_loop',
+  ],
+)
+
+cc_library(
+  name = 'intake_lib',
+  srcs = [
+    'intake.cc',
+    'intake_controls.cc',
+  ],
+  hdrs = [
+    'intake.h',
+    'intake_controls.h',
+  ],
+  deps = [
+    ':intake_queue',
+    ':intake_plants',
+    '//aos/common/controls:control_loop',
+    '//aos/common/util:trapezoid_profile',
+    '//aos/common:math',
+    '//y2016_bot3/queues:ball_detector',
+    '//frc971/control_loops:state_feedback_loop',
+    '//frc971/control_loops:simple_capped_state_feedback_loop',
+    '//frc971/zeroing',
+  ],
+)
+
+cc_test(
+  name = 'intake_lib_test',
+  srcs = [
+    'intake_lib_test.cc',
+  ],
+  deps = [
+    ':intake_queue',
+    ':intake_lib',
+    '//aos/testing:googletest',
+    '//aos/common:queues',
+    '//aos/common/controls:control_loop_test',
+    '//aos/common:math',
+    '//aos/common:time',
+    '//frc971/control_loops:position_sensor_sim',
+  ],
+)
+
+cc_binary(
+  name = 'intake',
+  srcs = [
+    'intake_main.cc',
+  ],
+  deps = [
+    '//aos/linux_code:init',
+    ':intake_lib',
+    ':intake_queue',
+  ],
+)
diff --git a/y2016_bot3/control_loops/intake/intake.cc b/y2016_bot3/control_loops/intake/intake.cc
new file mode 100644
index 0000000..5320cd5
--- /dev/null
+++ b/y2016_bot3/control_loops/intake/intake.cc
@@ -0,0 +1,265 @@
+#include "y2016_bot3/control_loops/intake/intake.h"
+#include "y2016_bot3/control_loops/intake/intake_controls.h"
+
+#include "aos/common/commonmath.h"
+#include "aos/common/controls/control_loops.q.h"
+#include "aos/common/logging/logging.h"
+
+#include "y2016_bot3/control_loops/intake/integral_intake_plant.h"
+#include "y2016_bot3/queues/ball_detector.q.h"
+
+namespace y2016_bot3 {
+namespace control_loops {
+namespace intake {
+
+namespace {
+// The maximum voltage the intake roller will be allowed to use.
+constexpr float kMaxIntakeTopVoltage = 12.0;
+constexpr float kMaxIntakeBottomVoltage = 12.0;
+
+}
+// namespace
+
+void LimitChecker::UpdateGoal(double intake_angle_goal) {
+  intake_->set_unprofiled_goal(intake_angle_goal);
+}
+
+Intake::Intake(control_loops::IntakeQueue *intake_queue)
+    : aos::controls::ControlLoop<control_loops::IntakeQueue>(intake_queue),
+      limit_checker_(&intake_) {}
+bool Intake::IsIntakeNear(double tolerance) {
+  return ((intake_.unprofiled_goal() - intake_.X_hat())
+              .block<2, 1>(0, 0)
+              .lpNorm<Eigen::Infinity>() < tolerance);
+}
+
+double Intake::MoveButKeepAbove(double reference_angle, double current_angle,
+                                double move_distance) {
+  return -MoveButKeepBelow(-reference_angle, -current_angle, -move_distance);
+}
+
+double Intake::MoveButKeepBelow(double reference_angle, double current_angle,
+                                double move_distance) {
+  // There are 3 interesting places to move to.
+  const double small_negative_move = current_angle - move_distance;
+  const double small_positive_move = current_angle + move_distance;
+  // And the reference angle.
+
+  // Move the the highest one that is below reference_angle.
+  if (small_negative_move > reference_angle) {
+    return reference_angle;
+  } else if (small_positive_move > reference_angle) {
+    return small_negative_move;
+  } else {
+    return small_positive_move;
+  }
+}
+
+void Intake::RunIteration(const control_loops::IntakeQueue::Goal *unsafe_goal,
+                          const control_loops::IntakeQueue::Position *position,
+                          control_loops::IntakeQueue::Output *output,
+                          control_loops::IntakeQueue::Status *status) {
+  const State state_before_switch = state_;
+  if (WasReset()) {
+    LOG(ERROR, "WPILib reset, restarting\n");
+    intake_.Reset();
+    state_ = UNINITIALIZED;
+  }
+
+  // Bool to track if we should turn the motors on or not.
+  bool disable = output == nullptr;
+
+  intake_.Correct(position->intake);
+
+  // There are 2 main zeroing paths, HIGH_ARM_ZERO and LOW_ARM_ZERO.
+  //
+  // HIGH_ARM_ZERO works by lifting the arm all the way up so it is clear,
+  // moving the shooter to be horizontal, moving the intake out, and then moving
+  // the arm back down.
+  //
+  // LOW_ARM_ZERO works by moving the intake out of the way, lifting the arm up,
+  // leveling the shooter, and then moving back down.
+
+  if (intake_.error()) {
+    state_ = ESTOP;
+  }
+
+  switch (state_) {
+    case UNINITIALIZED:
+      // Wait in the uninitialized state until intake is initialized.
+      LOG(DEBUG, "Uninitialized, waiting for intake\n");
+      if (intake_.initialized()) {
+        state_ = DISABLED_INITIALIZED;
+      }
+      disable = true;
+      break;
+
+    case DISABLED_INITIALIZED:
+      // Wait here until we are either fully zeroed while disabled, or we become
+      // enabled.
+      if (disable) {
+        if (intake_.zeroed()) {
+          state_ = SLOW_RUNNING;
+        }
+      } else {
+        if (intake_.angle() <= kIntakeMiddleAngle) {
+          state_ = ZERO_LIFT_INTAKE;
+        } else {
+          state_ = ZERO_LOWER_INTAKE;
+        }
+      }
+
+      // Set the goals to where we are now so when we start back up, we don't
+      // jump.
+      intake_.ForceGoal(intake_.angle());
+      // Set up the profile to be the zeroing profile.
+      intake_.AdjustProfile(0.5, 10);
+
+      // We are not ready to start doing anything yet.
+      disable = true;
+      break;
+
+    case ZERO_LOWER_INTAKE:
+      if (disable) {
+        state_ = DISABLED_INITIALIZED;
+      } else {
+        intake_.set_unprofiled_goal(kIntakeDownAngle);
+
+        if (IsIntakeNear(kLooseTolerance)) {
+          // Close enough, start the next move.
+          state_ = RUNNING;
+        }
+      }
+      break;
+
+    case ZERO_LIFT_INTAKE:
+      if (disable) {
+        state_ = DISABLED_INITIALIZED;
+      } else {
+        intake_.set_unprofiled_goal(kIntakeUpAngle);
+
+        if (IsIntakeNear(kLooseTolerance)) {
+          // Close enough, start the next move.
+          state_ = RUNNING;
+        }
+      }
+      break;
+
+    // These 4 cases are very similar.
+    case SLOW_RUNNING:
+    case RUNNING: {
+      if (disable) {
+        // If we are disabled, go to slow running if we are collided.
+        // Reset the profile to the current position so it moves well from here.
+        intake_.ForceGoal(intake_.angle());
+      }
+
+      double requested_intake = M_PI / 2.0;
+
+      if (unsafe_goal) {
+        intake_.AdjustProfile(unsafe_goal->max_angular_velocity_intake,
+                              unsafe_goal->max_angular_acceleration_intake);
+
+        requested_intake = unsafe_goal->angle_intake;
+      }
+      //Push the request out to the hardware.
+      limit_checker_.UpdateGoal(requested_intake);
+
+            // ESTOP if we hit the hard limits.
+      if (intake_.CheckHardLimits() && output) {
+        state_ = ESTOP;
+      }
+    } break;
+
+    case ESTOP:
+      LOG(ERROR, "Estop\n");
+      disable = true;
+      break;
+  }
+
+  // Set the voltage limits.
+  const double max_voltage =
+      (state_ == RUNNING) ? kOperatingVoltage : kZeroingVoltage;
+
+  intake_.set_max_voltage(max_voltage);
+
+  // Calculate the loops for a cycle.
+  {
+    Eigen::Matrix<double, 3, 1> error = intake_.controller().error();
+    status->intake.position_power = intake_.controller().K(0, 0) * error(0, 0);
+    status->intake.velocity_power = intake_.controller().K(0, 1) * error(1, 0);
+  }
+
+  intake_.Update(disable);
+
+  // Write out all the voltages.
+  if (output) {
+    output->voltage_intake = intake_.intake_voltage();
+
+    output->voltage_top_rollers = 0.0;
+    output->voltage_bottom_rollers = 0.0;
+
+    if (unsafe_goal) {
+      // Ball detector lights.
+      ::y2016_bot3::sensors::ball_detector.FetchLatest();
+      bool ball_detected = false;
+      if (::y2016_bot3::sensors::ball_detector.get()) {
+        ball_detected = ::y2016_bot3::sensors::ball_detector->voltage > 2.5;
+      }
+
+      // Intake.
+      if (unsafe_goal->force_intake || !ball_detected) {
+        output->voltage_top_rollers = ::std::max(
+            -kMaxIntakeTopVoltage,
+            ::std::min(unsafe_goal->voltage_top_rollers, kMaxIntakeTopVoltage));
+        output->voltage_bottom_rollers =
+            ::std::max(-kMaxIntakeBottomVoltage,
+                       ::std::min(unsafe_goal->voltage_bottom_rollers,
+                                  kMaxIntakeBottomVoltage));
+      } else {
+        output->voltage_top_rollers = 0.0;
+        output->voltage_bottom_rollers = 0.0;
+      }
+
+      // Traverse.
+      output->traverse_unlatched = unsafe_goal->traverse_unlatched;
+      output->traverse_down = unsafe_goal->traverse_down;
+    }
+  }
+
+  // Save debug/internal state.
+  status->zeroed = intake_.zeroed();
+
+  status->intake.angle = intake_.X_hat(0, 0);
+  status->intake.angular_velocity = intake_.X_hat(1, 0);
+  status->intake.goal_angle = intake_.goal(0, 0);
+  status->intake.goal_angular_velocity = intake_.goal(1, 0);
+  status->intake.unprofiled_goal_angle = intake_.unprofiled_goal(0, 0);
+  status->intake.unprofiled_goal_angular_velocity =
+      intake_.unprofiled_goal(1, 0);
+  status->intake.calculated_velocity =
+      (intake_.angle() - last_intake_angle_) / 0.005;
+  status->intake.voltage_error = intake_.X_hat(2, 0);
+  status->intake.estimator_state = intake_.IntakeEstimatorState();
+  status->intake.feedforwards_power = intake_.controller().ff_U(0, 0);
+
+  last_intake_angle_ = intake_.angle();
+
+  status->estopped = (state_ == ESTOP);
+
+  status->state = state_;
+
+  last_state_ = state_before_switch;
+}
+
+constexpr double Intake::kZeroingVoltage;
+constexpr double Intake::kOperatingVoltage;
+constexpr double Intake::kLooseTolerance;
+constexpr double Intake::kTightTolerance;
+constexpr double Intake::kIntakeUpAngle;
+constexpr double Intake::kIntakeMiddleAngle;
+constexpr double Intake::kIntakeDownAngle;
+
+}  // namespace intake
+}  // namespace control_loops
+}  // namespace y2016_bot3
diff --git a/y2016_bot3/control_loops/intake/intake.h b/y2016_bot3/control_loops/intake/intake.h
new file mode 100644
index 0000000..fed17ab
--- /dev/null
+++ b/y2016_bot3/control_loops/intake/intake.h
@@ -0,0 +1,153 @@
+#ifndef Y2016_BOT3_CONTROL_LOOPS_INTAKE_INTAKE_H_
+#define Y2016_BOT3_CONTROL_LOOPS_INTAKE_INTAKE_H_
+
+#include <memory>
+
+#include "aos/common/controls/control_loop.h"
+#include "aos/common/util/trapezoid_profile.h"
+#include "frc971/control_loops/state_feedback_loop.h"
+
+#include "frc971/zeroing/zeroing.h"
+#include "y2016_bot3/control_loops/intake/intake.q.h"
+#include "y2016_bot3/control_loops/intake/intake_controls.h"
+
+namespace y2016_bot3 {
+namespace constants {
+static const int kZeroingSampleSize = 200;
+
+// Ratios for our subsystems.
+// TODO(constants): Update these.
+static constexpr double kIntakeEncoderRatio = 18.0 / 72.0 * 15.0 / 48.0;
+
+static constexpr double kIntakePotRatio = 15.0 / 48.0;
+
+// Difference in radians between index pulses.
+static constexpr double kIntakeEncoderIndexDifference =
+    2.0 * M_PI * kIntakeEncoderRatio;
+
+// Subsystem motion ranges, in whatever units that their respective queues say
+// the use.
+// TODO(constants): Update these.
+static constexpr ::frc971::constants::Range kIntakeRange{// Lower hard stop
+                                                         -0.5,
+                                                         // Upper hard stop
+                                                         2.90,
+                                                         // Lower soft stop
+                                                         -0.300,
+                                                         // Uppper soft stop
+                                                         2.725};
+
+struct IntakeZero {
+  double pot_offset = 0.0;
+  ::frc971::constants::ZeroingConstants zeroing{
+      kZeroingSampleSize, kIntakeEncoderIndexDifference, 0.0, 0.3};
+};
+}  // namespace constants
+namespace control_loops {
+namespace intake {
+namespace testing {
+class IntakeTest_RespectsRange_Test;
+class IntakeTest_DisabledGoalTest_Test;
+class IntakeTest_IntakeZeroingErrorTest_Test;
+class IntakeTest_UpperHardstopStartup_Test;
+class IntakeTest_DisabledWhileZeroingHigh_Test;
+class IntakeTest_DisabledWhileZeroingLow_Test;
+}
+
+class LimitChecker {
+  public:
+    LimitChecker(IntakeArm *intake) : intake_(intake) {}
+    void UpdateGoal(double intake_angle_goal);
+  private:
+    IntakeArm *intake_;
+};
+
+class Intake : public ::aos::controls::ControlLoop<control_loops::IntakeQueue> {
+ public:
+  explicit Intake(
+      control_loops::IntakeQueue *my_intake = &control_loops::intake_queue);
+
+  static constexpr double kZeroingVoltage = 6.0;
+  static constexpr double kOperatingVoltage = 12.0;
+
+  // This is the large scale movement tolerance.
+  static constexpr double kLooseTolerance = 0.05;
+
+  // This is the small scale movement tolerance.
+  static constexpr double kTightTolerance = 0.03;
+
+  static constexpr double kIntakeUpAngle = M_PI / 2;
+
+  static constexpr double kIntakeDownAngle = 0.0;
+
+  static constexpr double kIntakeMiddleAngle =
+      (kIntakeUpAngle + kIntakeDownAngle) / 2;
+
+  enum State {
+    // Wait for all the filters to be ready before starting the initialization
+    // process.
+    UNINITIALIZED = 0,
+
+    // We now are ready to decide how to zero.  Decide what to do once we are
+    // enabled.
+    DISABLED_INITIALIZED = 1,
+
+    ZERO_LOWER_INTAKE = 2,
+
+    ZERO_LIFT_INTAKE = 3,
+    // Run, but limit power to zeroing voltages.
+    SLOW_RUNNING = 12,
+    // Run with full power.
+    RUNNING = 13,
+    // Internal error caused the intake to abort.
+    ESTOP = 16,
+  };
+
+  bool IsRunning() const {
+    return (state_ == SLOW_RUNNING || state_ == RUNNING);
+  }
+
+  State state() const { return state_; }
+
+  // Returns the value to move the joint to such that it will stay below
+  // reference_angle starting at current_angle, but move at least move_distance
+  static double MoveButKeepBelow(double reference_angle, double current_angle,
+                                 double move_distance);
+  // Returns the value to move the joint to such that it will stay above
+  // reference_angle starting at current_angle, but move at least move_distance
+  static double MoveButKeepAbove(double reference_angle, double current_angle,
+                                 double move_distance);
+
+ protected:
+  void RunIteration(const control_loops::IntakeQueue::Goal *unsafe_goal,
+                    const control_loops::IntakeQueue::Position *position,
+                    control_loops::IntakeQueue::Output *output,
+                    control_loops::IntakeQueue::Status *status) override;
+
+ private:
+  friend class testing::IntakeTest_DisabledGoalTest_Test;
+  friend class testing::IntakeTest_IntakeZeroingErrorTest_Test;
+  friend class testing::IntakeTest_RespectsRange_Test;
+  friend class testing::IntakeTest_UpperHardstopStartup_Test;
+  friend class testing::IntakeTest_DisabledWhileZeroingHigh_Test;
+  friend class testing::IntakeTest_DisabledWhileZeroingLow_Test;
+  IntakeArm intake_;
+
+  State state_ = UNINITIALIZED;
+  State last_state_ = UNINITIALIZED;
+
+  float last_intake_angle_ = 0.0;
+  LimitChecker limit_checker_;
+  // Returns true if the profile has finished, and the joint is within the
+  // specified tolerance.
+  bool IsIntakeNear(double tolerance);
+
+  DISALLOW_COPY_AND_ASSIGN(Intake);
+};
+
+
+}  // namespace intake
+}  // namespace control_loops
+}  // namespace y2016_bot3
+
+#endif  // Y2016_BOT3_CONTROL_LOOPS_SUPERSTRUCTURE_SUPERSTRUCTURE_H_
diff --git a/y2016_bot3/control_loops/intake/intake.q b/y2016_bot3/control_loops/intake/intake.q
new file mode 100644
index 0000000..da3edbb
--- /dev/null
+++ b/y2016_bot3/control_loops/intake/intake.q
@@ -0,0 +1,112 @@
+package y2016_bot3.control_loops;
+
+import "aos/common/controls/control_loops.q";
+import "frc971/control_loops/control_loops.q";
+
+struct JointState {
+  // Angle of the joint in radians.
+  float angle;
+  // Angular velocity of the joint in radians/second.
+  float angular_velocity;
+  // Profiled goal angle of the joint in radians.
+  float goal_angle;
+  // Profiled goal angular velocity of the joint in radians/second.
+  float goal_angular_velocity;
+  // Unprofiled goal angle of the joint in radians.
+  float unprofiled_goal_angle;
+  // Unprofiled goal angular velocity of the joint in radians/second.
+  float unprofiled_goal_angular_velocity;
+
+  // The estimated voltage error.
+  float voltage_error;
+
+  // The calculated velocity with delta x/delta t
+  float calculated_velocity;
+
+  // Components of the control loop output
+  float position_power;
+  float velocity_power;
+  float feedforwards_power;
+
+  // State of the estimator.
+  .frc971.EstimatorState estimator_state;
+};
+
+queue_group IntakeQueue {
+  implements aos.control_loops.ControlLoop;
+
+  message Goal {
+    // Zero on the intake is when the horizontal tube stock members are level
+    // with the ground.  This will be essentially when we are in the intaking
+    // position.  Positive is up.  The angle is measured relative to the top
+    // of the robot frame.
+    // Zero on the shoulder is horizontal.  Positive is up.  The angle is
+    // measured relative to the top of the robot frame.
+    // Zero on the wrist is horizontal and landed in the bellypan.  Positive is
+    // the same direction as the shoulder.  The angle is measured relative to
+    // the top of the robot frame.
+
+    // Goal angles and angular velocities of the intake.
+    double angle_intake;
+
+    // Caps on velocity/acceleration for profiling. 0 for the default.
+    float max_angular_velocity_intake;
+
+    float max_angular_acceleration_intake;
+
+    // Voltage to send to the rollers. Positive is sucking in.
+    float voltage_top_rollers;
+    float voltage_bottom_rollers;
+
+    bool force_intake;
+
+    // If true, release the latch which holds the traverse mechanism in the
+    // middle.
+    bool traverse_unlatched;
+    // If true, fire the traverse mechanism down.
+    bool traverse_down;
+  };
+
+  message Status {
+    // Is the intake zeroed?
+    bool zeroed;
+
+    // If true, we have aborted.
+    bool estopped;
+
+    // The internal state of the state machine.
+    int32_t state;
+
+
+    // Estimated angle and angular velocitie of the intake.
+    JointState intake;
+
+    // Is the intake collided?
+    bool is_collided;
+  };
+
+  message Position {
+    // Zero for the intake potentiometer value is horizontal, and positive is
+    // up.
+    .frc971.PotAndIndexPosition intake;
+  };
+
+  message Output {
+    float voltage_intake;
+
+    float voltage_top_rollers;
+    float voltage_bottom_rollers;
+
+    // If true, release the latch to hold the traverse mechanism in the middle.
+    bool traverse_unlatched;
+    // If true, fire the traverse mechanism down.
+    bool traverse_down;
+  };
+
+  queue Goal goal;
+  queue Position position;
+  queue Output output;
+  queue Status status;
+};
+
+queue_group IntakeQueue intake_queue;
diff --git a/y2016_bot3/control_loops/intake/intake_controls.cc b/y2016_bot3/control_loops/intake/intake_controls.cc
new file mode 100644
index 0000000..f5ada8c
--- /dev/null
+++ b/y2016_bot3/control_loops/intake/intake_controls.cc
@@ -0,0 +1,168 @@
+#include "y2016_bot3/control_loops/intake/intake_controls.h"
+
+#include "aos/common/controls/control_loops.q.h"
+#include "aos/common/logging/logging.h"
+
+#include "y2016_bot3/control_loops/intake/integral_intake_plant.h"
+
+#include "y2016_bot3/control_loops/intake/intake.h"
+
+namespace y2016_bot3 {
+namespace constants {
+IntakeZero intake_zero;
+}
+namespace control_loops {
+namespace intake {
+
+using ::frc971::PotAndIndexPosition;
+using ::frc971::EstimatorState;
+
+namespace {
+double UseUnlessZero(double target_value, double default_value) {
+  if (target_value != 0.0) {
+    return target_value;
+  } else {
+    return default_value;
+  }
+}
+}  // namespace
+
+// Intake
+IntakeArm::IntakeArm()
+    : loop_(new ::frc971::control_loops::SimpleCappedStateFeedbackLoop<3, 1, 1>(
+          ::y2016_bot3::control_loops::intake::MakeIntegralIntakeLoop())),
+      estimator_(y2016_bot3::constants::intake_zero.zeroing),
+      profile_(::aos::controls::kLoopFrequency) {
+  Y_.setZero();
+  unprofiled_goal_.setZero();
+  offset_.setZero();
+  AdjustProfile(0.0, 0.0);
+}
+
+void IntakeArm::UpdateIntakeOffset(double offset) {
+  const double doffset = offset - offset_(0, 0);
+  LOG(INFO, "Adjusting Intake offset from %f to %f\n", offset_(0, 0), offset);
+
+  loop_->mutable_X_hat()(0, 0) += doffset;
+  Y_(0, 0) += doffset;
+  loop_->mutable_R(0, 0) += doffset;
+
+  profile_.MoveGoal(doffset);
+  offset_(0, 0) = offset;
+
+  CapGoal("R", &loop_->mutable_R());
+}
+
+void IntakeArm::Correct(PotAndIndexPosition position) {
+  estimator_.UpdateEstimate(position);
+
+  if (estimator_.error()) {
+    LOG(ERROR, "zeroing error with intake_estimator\n");
+    return;
+  }
+
+  if (!initialized_) {
+    if (estimator_.offset_ready()) {
+      UpdateIntakeOffset(estimator_.offset());
+      initialized_ = true;
+    }
+  }
+
+  if (!zeroed_ && estimator_.zeroed()) {
+    UpdateIntakeOffset(estimator_.offset());
+    zeroed_ = true;
+  }
+
+  Y_ << position.encoder;
+  Y_ += offset_;
+  loop_->Correct(Y_);
+}
+
+void IntakeArm::CapGoal(const char *name, Eigen::Matrix<double, 3, 1> *goal) {
+  // Limit the goal to min/max allowable angles.
+  if ((*goal)(0, 0) > y2016_bot3::constants::kIntakeRange.upper) {
+    LOG(WARNING, "Intake goal %s above limit, %f > %f\n", name, (*goal)(0, 0),
+        y2016_bot3::constants::kIntakeRange.upper);
+    (*goal)(0, 0) = y2016_bot3::constants::kIntakeRange.upper;
+  }
+  if ((*goal)(0, 0) < y2016_bot3::constants::kIntakeRange.lower) {
+    LOG(WARNING, "Intake goal %s below limit, %f < %f\n", name, (*goal)(0, 0),
+        y2016_bot3::constants::kIntakeRange.lower);
+    (*goal)(0, 0) = y2016_bot3::constants::kIntakeRange.lower;
+  }
+}
+
+void IntakeArm::ForceGoal(double goal) {
+  set_unprofiled_goal(goal);
+  loop_->mutable_R() = unprofiled_goal_;
+  loop_->mutable_next_R() = loop_->R();
+
+  profile_.MoveCurrentState(loop_->R().block<2, 1>(0, 0));
+}
+
+void IntakeArm::set_unprofiled_goal(double unprofiled_goal) {
+  unprofiled_goal_(0, 0) = unprofiled_goal;
+  unprofiled_goal_(1, 0) = 0.0;
+  unprofiled_goal_(2, 0) = 0.0;
+  CapGoal("unprofiled R", &unprofiled_goal_);
+}
+
+void IntakeArm::Update(bool disable) {
+  if (!disable) {
+    ::Eigen::Matrix<double, 2, 1> goal_state =
+        profile_.Update(unprofiled_goal_(0, 0), unprofiled_goal_(1, 0));
+
+    loop_->mutable_next_R(0, 0) = goal_state(0, 0);
+    loop_->mutable_next_R(1, 0) = goal_state(1, 0);
+    loop_->mutable_next_R(2, 0) = 0.0;
+    CapGoal("next R", &loop_->mutable_next_R());
+  }
+
+  loop_->Update(disable);
+
+  if (!disable && loop_->U(0, 0) != loop_->U_uncapped(0, 0)) {
+    profile_.MoveCurrentState(loop_->R().block<2, 1>(0, 0));
+  }
+}
+
+bool IntakeArm::CheckHardLimits() {
+  // Returns whether hard limits have been exceeded.
+
+  if (angle() > y2016_bot3::constants::kIntakeRange.upper_hard ||
+      angle() < y2016_bot3::constants::kIntakeRange.lower_hard) {
+    LOG(ERROR, "Intake at %f out of bounds [%f, %f], ESTOPing\n", angle(),
+        y2016_bot3::constants::kIntakeRange.lower_hard,
+        y2016_bot3::constants::kIntakeRange.upper_hard);
+    return true;
+  }
+
+  return false;
+}
+
+void IntakeArm::set_max_voltage(double voltage) {
+  loop_->set_max_voltage(0, voltage);
+}
+
+void IntakeArm::AdjustProfile(double max_angular_velocity,
+                              double max_angular_acceleration) {
+  profile_.set_maximum_velocity(UseUnlessZero(max_angular_velocity, 10.0));
+  profile_.set_maximum_acceleration(
+      UseUnlessZero(max_angular_acceleration, 10.0));
+}
+
+void IntakeArm::Reset() {
+  estimator_.Reset();
+  initialized_ = false;
+  zeroed_ = false;
+}
+
+EstimatorState IntakeArm::IntakeEstimatorState() {
+  EstimatorState estimator_state;
+  ::frc971::zeroing::PopulateEstimatorState(estimator_, &estimator_state);
+
+  return estimator_state;
+}
+
+}  // namespace intake
+}  // namespace control_loops
+}  // namespace y2016_bot3
diff --git a/y2016_bot3/control_loops/intake/intake_controls.h b/y2016_bot3/control_loops/intake/intake_controls.h
new file mode 100644
index 0000000..0b2daa0
--- /dev/null
+++ b/y2016_bot3/control_loops/intake/intake_controls.h
@@ -0,0 +1,112 @@
+#ifndef Y2016_BOT3_CONTROL_LOOPS_INTAKE_INTAKE_CONTROLS_H_
+#define Y2016_BOT3_CONTROL_LOOPS_INTAKE_INTAKE_CONTROLS_H_
+
+#include <memory>
+
+#include "aos/common/controls/control_loop.h"
+#include "frc971/control_loops/state_feedback_loop.h"
+#include "frc971/control_loops/simple_capped_state_feedback_loop.h"
+#include "aos/common/util/trapezoid_profile.h"
+
+#include "frc971/zeroing/zeroing.h"
+#include "y2016_bot3/control_loops/intake/intake.q.h"
+
+namespace y2016_bot3 {
+namespace control_loops {
+namespace intake {
+namespace testing {
+class IntakeTest_DisabledGoalTest_Test;
+}  // namespace testing
+
+class IntakeArm {
+ public:
+  IntakeArm();
+  // Returns whether the estimators have been initialized and zeroed.
+  bool initialized() const { return initialized_; }
+  bool zeroed() const { return zeroed_; }
+  // Returns whether an error has occured
+  bool error() const { return estimator_.error(); }
+
+  // Updates our estimator with the latest position.
+  void Correct(::frc971::PotAndIndexPosition position);
+  // Runs the controller and profile generator for a cycle.
+  void Update(bool disabled);
+  // Sets the maximum voltage that will be commanded by the loop.
+  void set_max_voltage(double voltage);
+
+  // Forces the current goal to the provided goal, bypassing the profiler.
+  void ForceGoal(double goal);
+  // Sets the unprofiled goal.  The profiler will generate a profile to go to
+  // this goal.
+  void set_unprofiled_goal(double unprofiled_goal);
+  // Limits our profiles to a max velocity and acceleration for proper motion.
+  void AdjustProfile(double max_angular_velocity,
+                     double max_angular_acceleration);
+
+  // Returns true if we have exceeded any hard limits.
+  bool CheckHardLimits();
+  // Resets the internal state.
+  void Reset();
+
+  // Returns the current internal estimator state for logging.
+  ::frc971::EstimatorState IntakeEstimatorState();
+
+  // Returns the requested intake voltage.
+  double intake_voltage() const { return loop_->U(0, 0); }
+
+  // Returns the current position.
+  double angle() const { return Y_(0, 0); }
+
+  // Returns the controller error.
+  const StateFeedbackLoop<3, 1, 1> &controller() const { return *loop_; }
+
+  // Returns the filtered goal.
+  const Eigen::Matrix<double, 3, 1> &goal() const { return loop_->R(); }
+  double goal(int row, int col) const { return loop_->R(row, col); }
+
+  // Returns the unprofiled goal.
+  const Eigen::Matrix<double, 3, 1> &unprofiled_goal() const {
+    return unprofiled_goal_;
+  }
+  double unprofiled_goal(int row, int col) const {
+    return unprofiled_goal_(row, col);
+  }
+
+  // Returns the current state estimate.
+  const Eigen::Matrix<double, 3, 1> &X_hat() const { return loop_->X_hat(); }
+  double X_hat(int row, int col) const { return loop_->X_hat(row, col); }
+
+  // For testing:
+  // Triggers an estimator error.
+  void TriggerEstimatorError() { estimator_.TriggerError(); }
+
+ private:
+  // Limits the provided goal to the soft limits.  Prints "name" when it fails
+  // to aid debugging.
+  void CapGoal(const char *name, Eigen::Matrix<double, 3, 1> *goal);
+
+  void UpdateIntakeOffset(double offset);
+
+  ::std::unique_ptr<
+      ::frc971::control_loops::SimpleCappedStateFeedbackLoop<3, 1, 1>> loop_;
+
+  ::frc971::zeroing::ZeroingEstimator estimator_;
+  aos::util::TrapezoidProfile profile_;
+
+  // Current measurement.
+  Eigen::Matrix<double, 1, 1> Y_;
+  // Current offset.  Y_ = offset_ + raw_sensor;
+  Eigen::Matrix<double, 1, 1> offset_;
+
+  // The goal that the profile tries to reach.
+  Eigen::Matrix<double, 3, 1> unprofiled_goal_;
+
+  bool initialized_ = false;
+  bool zeroed_ = false;
+};
+
+}  // namespace intake
+}  // namespace control_loops
+}  // namespace y2016_bot3
+
+#endif  // Y2016_CONTROL_LOOPS_SUPERSTRUCTURE_SUPERSTRUCTURE_CONTROLS_H_
diff --git a/y2016_bot3/control_loops/intake/intake_lib_test.cc b/y2016_bot3/control_loops/intake/intake_lib_test.cc
new file mode 100644
index 0000000..43232aa
--- /dev/null
+++ b/y2016_bot3/control_loops/intake/intake_lib_test.cc
@@ -0,0 +1,552 @@
+#include "y2016_bot3/control_loops/intake/intake.h"
+
+#include <unistd.h>
+
+#include <memory>
+
+#include "gtest/gtest.h"
+#include "aos/common/queue.h"
+#include "aos/common/controls/control_loop_test.h"
+#include "aos/common/commonmath.h"
+#include "aos/common/time.h"
+#include "frc971/control_loops/position_sensor_sim.h"
+#include "y2016_bot3/control_loops/intake/intake.q.h"
+#include "y2016_bot3/control_loops/intake/intake_plant.h"
+
+using ::aos::time::Time;
+using ::frc971::control_loops::PositionSensorSimulator;
+
+namespace y2016_bot3 {
+namespace control_loops {
+namespace intake {
+namespace testing {
+
+class IntakePlant : public StateFeedbackPlant<2, 1, 1> {
+ public:
+  explicit IntakePlant(StateFeedbackPlant<2, 1, 1> &&other)
+      : StateFeedbackPlant<2, 1, 1>(::std::move(other)) {}
+
+  void CheckU() override {
+    for (int i = 0; i < kNumInputs; ++i) {
+      assert(U(i, 0) <= U_max(i, 0) + 0.00001 + voltage_offset_);
+      assert(U(i, 0) >= U_min(i, 0) - 0.00001 + voltage_offset_);
+    }
+  }
+
+  double voltage_offset() const { return voltage_offset_; }
+  void set_voltage_offset(double voltage_offset) {
+    voltage_offset_ = voltage_offset;
+  }
+
+ private:
+  double voltage_offset_ = 0.0;
+};
+
+// Class which simulates the intake and sends out queue messages with
+// the position.
+class IntakeSimulation {
+ public:
+  static constexpr double kNoiseScalar = 0.1;
+  IntakeSimulation()
+      : intake_plant_(new IntakePlant(MakeIntakePlant())),
+        pot_encoder_intake_(
+            y2016_bot3::constants::kIntakeEncoderIndexDifference),
+        intake_queue_(".y2016_bot3.control_loops.intake", 0x0,
+                      ".y2016_bot3.control_loops.intake.goal",
+                      ".y2016_bot3.control_loops.intake.status",
+                      ".y2016_bot3.control_loops.intake.output",
+                      ".y2016_bot3.control_loops.intake.status") {
+    InitializeIntakePosition(0.0);
+  }
+
+  void InitializeIntakePosition(double start_pos) {
+    intake_plant_->mutable_X(0, 0) = start_pos;
+    intake_plant_->mutable_X(1, 0) = 0.0;
+
+    pot_encoder_intake_.Initialize(start_pos, kNoiseScalar);
+  }
+
+  // Sends a queue message with the position.
+  void SendPositionMessage() {
+    ::aos::ScopedMessagePtr<control_loops::IntakeQueue::Position> position =
+        intake_queue_.position.MakeMessage();
+
+    pot_encoder_intake_.GetSensorValues(&position->intake);
+
+    position.Send();
+  }
+
+  double intake_angle() const { return intake_plant_->X(0, 0); }
+  double intake_angular_velocity() const { return intake_plant_->X(1, 0); }
+
+  // Sets the difference between the commanded and applied powers.
+  // This lets us test that the integrators work.
+  void set_power_error(double power_error_intake) {
+    intake_plant_->set_voltage_offset(power_error_intake);
+  }
+
+  // Simulates for a single timestep.
+  void Simulate() {
+    EXPECT_TRUE(intake_queue_.output.FetchLatest());
+
+    // Feed voltages into physics simulation.
+    intake_plant_->mutable_U() << intake_queue_.output->voltage_intake +
+                                      intake_plant_->voltage_offset();
+
+    // Verify that the correct power limits are being respected depending on
+    // which mode we are in.
+    EXPECT_TRUE(intake_queue_.status.FetchLatest());
+    if (intake_queue_.status->state == Intake::RUNNING) {
+      CHECK_LE(::std::abs(intake_queue_.output->voltage_intake),
+               Intake::kOperatingVoltage);
+    } else {
+      CHECK_LE(::std::abs(intake_queue_.output->voltage_intake),
+               Intake::kZeroingVoltage);
+    }
+
+    // Use the plant to generate the next physical state given the voltages to
+    // the motors.
+    intake_plant_->Update();
+
+    const double angle_intake = intake_plant_->Y(0, 0);
+
+    // Use the physical state to simulate sensor readings.
+    pot_encoder_intake_.MoveTo(angle_intake);
+
+    // Validate that everything is within range.
+    EXPECT_GE(angle_intake, y2016_bot3::constants::kIntakeRange.lower_hard);
+    EXPECT_LE(angle_intake, y2016_bot3::constants::kIntakeRange.upper_hard);
+  }
+
+ private:
+  ::std::unique_ptr<IntakePlant> intake_plant_;
+
+  PositionSensorSimulator pot_encoder_intake_;
+
+  IntakeQueue intake_queue_;
+};
+
+class IntakeTest : public ::aos::testing::ControlLoopTest {
+ protected:
+  IntakeTest()
+      : intake_queue_(".y2016_bot3.control_loops.intake", 0x0,
+                      ".y2016_bot3.control_loops.intake.goal",
+                      ".y2016_bot3.control_loops.intake.status",
+                      ".y2016_bot3.control_loops.intake.output",
+                      ".y2016_bot3.control_loops.intake.status"),
+        intake_(&intake_queue_),
+        intake_plant_() {}
+
+  void VerifyNearGoal() {
+    intake_queue_.goal.FetchLatest();
+    intake_queue_.status.FetchLatest();
+
+    EXPECT_TRUE(intake_queue_.goal.get() != nullptr);
+    EXPECT_TRUE(intake_queue_.status.get() != nullptr);
+
+    EXPECT_NEAR(intake_queue_.goal->angle_intake,
+                intake_queue_.status->intake.angle, 0.001);
+    EXPECT_NEAR(intake_queue_.goal->angle_intake, intake_plant_.intake_angle(),
+                0.001);
+  }
+
+  // Runs one iteration of the whole simulation
+  void RunIteration(bool enabled = true) {
+    SendMessages(enabled);
+
+    intake_plant_.SendPositionMessage();
+    intake_.Iterate();
+    intake_plant_.Simulate();
+
+    TickTime();
+  }
+
+  // Runs iterations until the specified amount of simulated time has elapsed.
+  void RunForTime(const Time &run_for, bool enabled = true) {
+    const auto start_time = Time::Now();
+    while (Time::Now() < start_time + run_for) {
+      const auto loop_start_time = Time::Now();
+      double begin_intake_velocity = intake_plant_.intake_angular_velocity();
+      RunIteration(enabled);
+      const double loop_time = (Time::Now() - loop_start_time).ToSeconds();
+      const double intake_acceleration =
+          (intake_plant_.intake_angular_velocity() - begin_intake_velocity) /
+          loop_time;
+      EXPECT_GE(peak_intake_acceleration_, intake_acceleration);
+      EXPECT_LE(-peak_intake_acceleration_, intake_acceleration);
+
+      EXPECT_GE(peak_intake_velocity_, intake_plant_.intake_angular_velocity());
+      EXPECT_LE(-peak_intake_velocity_,
+                intake_plant_.intake_angular_velocity());
+    }
+  }
+
+  // Runs iterations while watching the average acceleration per cycle and
+  // making sure it doesn't exceed the provided bounds.
+  void set_peak_intake_acceleration(double value) {
+    peak_intake_acceleration_ = value;
+  }
+  void set_peak_intake_velocity(double value) { peak_intake_velocity_ = value; }
+
+
+
+  // Create a new instance of the test queue so that it invalidates the queue
+  // that it points to.  Otherwise, we will have a pointed to
+  // shared memory that is no longer valid.
+  IntakeQueue intake_queue_;
+
+  // Create a control loop and simulation.
+  Intake intake_;
+  IntakeSimulation intake_plant_;
+
+ private:
+  // The acceleration limits to check for while moving for the 3 axes.
+  double peak_intake_acceleration_ = 1e10;
+  // The velocity limits to check for while moving for the 3 axes.
+  double peak_intake_velocity_ = 1e10;
+};
+
+// Tests that the intake does nothing when the goal is zero.
+TEST_F(IntakeTest, DoesNothing) {
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(0)
+                  .max_angular_velocity_intake(20)
+                  .max_angular_acceleration_intake(20)
+                  .Send());
+
+  // TODO(phil): Send a goal of some sort.
+  RunForTime(Time::InSeconds(5));
+  VerifyNearGoal();
+}
+
+// Tests that the loop can reach a goal.
+TEST_F(IntakeTest, ReachesGoal) {
+  // Set a reasonable goal.
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(M_PI / 4.0)
+                  .max_angular_velocity_intake(20)
+                  .max_angular_acceleration_intake(20)
+                  .Send());
+
+  // Give it a lot of time to get there.
+  RunForTime(Time::InSeconds(8));
+
+  VerifyNearGoal();
+}
+
+// Tests that the loop doesn't try and go beyond the physical range of the
+// mechanisms.
+TEST_F(IntakeTest, RespectsRange) {
+  // Set some ridiculous goals to test upper limits.
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(M_PI * 10)
+                  .max_angular_velocity_intake(20)
+                  .max_angular_acceleration_intake(20)
+                  .Send());
+  RunForTime(Time::InSeconds(10));
+
+  // Check that we are near our soft limit.
+  intake_queue_.status.FetchLatest();
+  EXPECT_NEAR(y2016_bot3::constants::kIntakeRange.upper,
+              intake_queue_.status->intake.angle, 0.001);
+
+
+  // Set some ridiculous goals to test lower limits.
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(-M_PI * 10)
+                  .max_angular_velocity_intake(20)
+                  .max_angular_acceleration_intake(20)
+                  .Send());
+
+  RunForTime(Time::InSeconds(10));
+
+  // Check that we are near our soft limit.
+  intake_queue_.status.FetchLatest();
+  EXPECT_NEAR(y2016_bot3::constants::kIntakeRange.lower,
+              intake_queue_.status->intake.angle, 0.001);
+}
+
+// Tests that the loop zeroes when run for a while.
+TEST_F(IntakeTest, ZeroTest) {
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(y2016_bot3::constants::kIntakeRange.lower)
+                  .max_angular_velocity_intake(20)
+                  .max_angular_acceleration_intake(20)
+                  .Send());
+
+  RunForTime(Time::InSeconds(10));
+
+  VerifyNearGoal();
+}
+
+// Tests that the loop zeroes when run for a while without a goal.
+TEST_F(IntakeTest, ZeroNoGoal) {
+  RunForTime(Time::InSeconds(5));
+
+  EXPECT_EQ(Intake::RUNNING, intake_.state());
+}
+
+// Tests that starting at the lower hardstops doesn't cause an abort.
+TEST_F(IntakeTest, LowerHardstopStartup) {
+  intake_plant_.InitializeIntakePosition(
+      y2016_bot3::constants::kIntakeRange.lower);
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(y2016_bot3::constants::kIntakeRange.upper)
+                  .Send());
+
+  RunForTime(Time::InSeconds(15));
+  VerifyNearGoal();
+}
+
+// Tests that starting at the upper hardstops doesn't cause an abort.
+TEST_F(IntakeTest, UpperHardstopStartup) {
+  intake_plant_.InitializeIntakePosition(
+      y2016_bot3::constants::kIntakeRange.upper);
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(y2016_bot3::constants::kIntakeRange.lower)
+                  .Send());
+
+  RunForTime(Time::InSeconds(15));
+  VerifyNearGoal();
+}
+
+// Tests that resetting WPILib results in a rezero.
+TEST_F(IntakeTest, ResetTest) {
+  intake_plant_.InitializeIntakePosition(
+      y2016_bot3::constants::kIntakeRange.upper);
+
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(y2016_bot3::constants::kIntakeRange.lower + 0.3)
+                  .Send());
+  RunForTime(Time::InSeconds(15));
+
+  EXPECT_EQ(Intake::RUNNING, intake_.state());
+  VerifyNearGoal();
+  SimulateSensorReset();
+  RunForTime(Time::InMS(100));
+  EXPECT_NE(Intake::RUNNING, intake_.state());
+  RunForTime(Time::InMS(10000));
+  EXPECT_EQ(Intake::RUNNING, intake_.state());
+  VerifyNearGoal();
+}
+
+// Tests that the internal goals don't change while disabled.
+TEST_F(IntakeTest, DisabledGoalTest) {
+  ASSERT_TRUE(
+      intake_queue_.goal.MakeWithBuilder()
+          .angle_intake(y2016_bot3::constants::kIntakeRange.lower + 0.03)
+          .Send());
+
+  RunForTime(Time::InMS(100), false);
+  EXPECT_EQ(0.0, intake_.intake_.goal(0, 0));
+
+  // Now make sure they move correctly
+  RunForTime(Time::InMS(4000), true);
+  EXPECT_NE(0.0, intake_.intake_.goal(0, 0));
+}
+
+// Tests that disabling while zeroing at any state restarts from beginning
+TEST_F(IntakeTest, DisabledWhileZeroingHigh) {
+  intake_plant_.InitializeIntakePosition(
+      y2016_bot3::constants::kIntakeRange.upper);
+
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(y2016_bot3::constants::kIntakeRange.upper)
+                  .max_angular_velocity_intake(20)
+                  .max_angular_acceleration_intake(20)
+                  .Send());
+
+  // Expected states to cycle through and check in order.
+  Intake::State ExpectedStateOrder[] = {
+      Intake::DISABLED_INITIALIZED, Intake::ZERO_LOWER_INTAKE};
+
+  // Cycle through until intake_ is initialized in intake.cc
+  while (intake_.state() < Intake::DISABLED_INITIALIZED) {
+    RunIteration(true);
+  }
+
+  static const int kNumberOfStates =
+      sizeof(ExpectedStateOrder) / sizeof(ExpectedStateOrder[0]);
+
+  // Next state when reached to disable
+  for (int i = 0; i < kNumberOfStates; i++) {
+    // Next expected state after being disabled that is expected until next
+    //  state to disable at is reached
+    for (int j = 0; intake_.state() != ExpectedStateOrder[i] && j <= i; j++) {
+      // RunIteration until next expected state is reached with a maximum
+      //  of 10000 times to ensure a breakout
+      for (int o = 0; intake_.state() < ExpectedStateOrder[j] && o < 10000;
+           o++) {
+        RunIteration(true);
+      }
+      EXPECT_EQ(ExpectedStateOrder[j], intake_.state());
+    }
+
+    EXPECT_EQ(ExpectedStateOrder[i], intake_.state());
+
+    // Disable
+    RunIteration(false);
+
+    EXPECT_EQ(Intake::DISABLED_INITIALIZED, intake_.state());
+  }
+
+  RunForTime(Time::InSeconds(10));
+  EXPECT_EQ(Intake::RUNNING, intake_.state());
+}
+
+// Tests that disabling while zeroing at any state restarts from beginning
+TEST_F(IntakeTest, DisabledWhileZeroingLow) {
+  intake_plant_.InitializeIntakePosition(
+      y2016_bot3::constants::kIntakeRange.lower);
+
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(y2016_bot3::constants::kIntakeRange.lower)
+                  .max_angular_velocity_intake(20)
+                  .max_angular_acceleration_intake(20)
+                  .Send());
+
+  // Expected states to cycle through and check in order.
+  Intake::State ExpectedStateOrder[] = {
+      Intake::DISABLED_INITIALIZED, Intake::ZERO_LIFT_INTAKE};
+
+  // Cycle through until intake_ is initialized in intake.cc
+  while (intake_.state() < Intake::DISABLED_INITIALIZED) {
+    RunIteration(true);
+  }
+
+  static const int kNumberOfStates =
+      sizeof(ExpectedStateOrder) / sizeof(ExpectedStateOrder[0]);
+
+  // Next state when reached to disable
+  for (int i = 0; i < kNumberOfStates; i++) {
+    // Next expected state after being disabled that is expected until next
+    //  state to disable at is reached
+    for (int j = 0; intake_.state() != ExpectedStateOrder[i] && j <= i; j++) {
+      // RunIteration until next expected state is reached with a maximum
+      //  of 10000 times to ensure a breakout
+      for (int o = 0; intake_.state() < ExpectedStateOrder[j] && o < 10000;
+           o++) {
+        RunIteration(true);
+      }
+      EXPECT_EQ(ExpectedStateOrder[j], intake_.state());
+    }
+
+    EXPECT_EQ(ExpectedStateOrder[i], intake_.state());
+
+    // Disable
+    RunIteration(false);
+
+    EXPECT_EQ(Intake::DISABLED_INITIALIZED, intake_.state());
+  }
+
+  RunForTime(Time::InSeconds(10));
+  EXPECT_EQ(Intake::RUNNING, intake_.state());
+}
+
+// Tests that MoveButKeepBelow returns sane values.
+TEST_F(IntakeTest, MoveButKeepBelowTest) {
+  EXPECT_EQ(1.0, Intake::MoveButKeepBelow(1.0, 10.0, 1.0));
+  EXPECT_EQ(1.0, Intake::MoveButKeepBelow(1.0, 2.0, 1.0));
+  EXPECT_EQ(0.0, Intake::MoveButKeepBelow(1.0, 1.0, 1.0));
+  EXPECT_EQ(1.0, Intake::MoveButKeepBelow(1.0, 0.0, 1.0));
+}
+
+// Tests that the integrators works.
+TEST_F(IntakeTest, IntegratorTest) {
+  intake_plant_.InitializeIntakePosition(
+      y2016_bot3::constants::kIntakeRange.lower);
+  intake_plant_.set_power_error(1.0);
+  intake_queue_.goal.MakeWithBuilder().angle_intake(0.0).Send();
+
+  RunForTime(Time::InSeconds(8));
+
+  VerifyNearGoal();
+}
+
+// Tests that zeroing while disabled works.  Starts the superstructure near a
+// pulse, lets it initialize, moves it past the pulse, enables, and then make
+// sure it goes to the right spot.
+TEST_F(IntakeTest, DisabledZeroTest) {
+  intake_plant_.InitializeIntakePosition(-0.001);
+
+  intake_queue_.goal.MakeWithBuilder().angle_intake(0.0).Send();
+
+  // Run disabled for 2 seconds
+  RunForTime(Time::InSeconds(2), false);
+  EXPECT_EQ(Intake::DISABLED_INITIALIZED, intake_.state());
+
+  intake_plant_.set_power_error(1.0);
+
+  RunForTime(Time::InSeconds(1), false);
+
+  EXPECT_EQ(Intake::SLOW_RUNNING, intake_.state());
+  RunForTime(Time::InSeconds(2), true);
+
+  VerifyNearGoal();
+}
+
+// Tests that the zeroing errors in the intake are caught
+TEST_F(IntakeTest, IntakeZeroingErrorTest) {
+  RunIteration();
+  EXPECT_NE(Intake::ESTOP, intake_.state());
+  intake_.intake_.TriggerEstimatorError();
+  RunIteration();
+
+  EXPECT_EQ(Intake::ESTOP, intake_.state());
+}
+
+// Tests that the loop respects intake acceleration limits while moving.
+TEST_F(IntakeTest, IntakeAccelerationLimitTest) {
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(0.0)
+                  .max_angular_velocity_intake(20)
+                  .max_angular_acceleration_intake(20)
+                  .Send());
+
+  RunForTime(Time::InSeconds(6));
+  EXPECT_EQ(Intake::RUNNING, intake_.state());
+
+  VerifyNearGoal();
+
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(0.5)
+                  .max_angular_velocity_intake(1)
+                  .max_angular_acceleration_intake(1)
+                  .Send());
+
+  set_peak_intake_acceleration(1.20);
+  RunForTime(Time::InSeconds(4));
+
+  VerifyNearGoal();
+}
+
+// Tests that the loop respects intake handles saturation while accelerating
+// correctly.
+TEST_F(IntakeTest, SaturatedIntakeProfileTest) {
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(0.0)
+                  .max_angular_velocity_intake(20)
+                  .max_angular_acceleration_intake(20)
+                  .Send());
+
+  RunForTime(Time::InSeconds(6));
+  EXPECT_EQ(Intake::RUNNING, intake_.state());
+
+  VerifyNearGoal();
+
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(0.5)
+                  .max_angular_velocity_intake(4.5)
+                  .max_angular_acceleration_intake(800)
+                  .Send());
+
+  set_peak_intake_velocity(4.65);
+  RunForTime(Time::InSeconds(4));
+
+  VerifyNearGoal();
+}
+
+}  // namespace testing
+}  // namespace intake
+}  // namespace control_loops
+}  // namespace frc971
diff --git a/y2016_bot3/control_loops/intake/intake_main.cc b/y2016_bot3/control_loops/intake/intake_main.cc
new file mode 100644
index 0000000..a60f914
--- /dev/null
+++ b/y2016_bot3/control_loops/intake/intake_main.cc
@@ -0,0 +1,11 @@
+#include "y2016_bot3/control_loops/intake/intake.h"
+
+#include "aos/linux_code/init.h"
+
+int main() {
+  ::aos::Init();
+  ::y2016_bot3::control_loops::intake::Intake intake;
+  intake.Run();
+  ::aos::Cleanup();
+  return 0;
+}
diff --git a/y2016_bot3/control_loops/python/BUILD b/y2016_bot3/control_loops/python/BUILD
new file mode 100644
index 0000000..1c2ef63
--- /dev/null
+++ b/y2016_bot3/control_loops/python/BUILD
@@ -0,0 +1,65 @@
+package(default_visibility = ['//y2016_bot3:__subpackages__'])
+
+py_binary(
+  name = 'drivetrain',
+  srcs = [
+    'drivetrain.py',
+  ],
+  deps = [
+    '//external:python-gflags',
+    '//external:python-glog',
+    '//frc971/control_loops/python:controls',
+  ],
+)
+
+py_binary(
+  name = 'polydrivetrain',
+  srcs = [
+    'polydrivetrain.py',
+    'drivetrain.py',
+  ],
+  deps = [
+    '//external:python-gflags',
+    '//external:python-glog',
+    '//frc971/control_loops/python:controls',
+  ],
+)
+
+py_library(
+  name = 'polydrivetrain_lib',
+  srcs = [
+    'polydrivetrain.py',
+    'drivetrain.py',
+  ],
+  deps = [
+    '//external:python-gflags',
+    '//external:python-glog',
+    '//frc971/control_loops/python:controls',
+  ],
+)
+
+py_binary(
+  name = 'intake',
+  srcs = [
+    'intake.py',
+  ],
+  deps = [
+    '//aos/common/util:py_trapezoid_profile',
+    '//external:python-gflags',
+    '//external:python-glog',
+    '//frc971/control_loops/python:controls',
+  ],
+)
+
+py_library(
+  name = 'intake_lib',
+  srcs = [
+    'intake.py',
+  ],
+  deps = [
+    '//aos/common/util:py_trapezoid_profile',
+    '//external:python-gflags',
+    '//external:python-glog',
+    '//frc971/control_loops/python:controls',
+  ],
+)
diff --git a/y2016_bot3/control_loops/python/drivetrain.py b/y2016_bot3/control_loops/python/drivetrain.py
new file mode 100755
index 0000000..5a67416
--- /dev/null
+++ b/y2016_bot3/control_loops/python/drivetrain.py
@@ -0,0 +1,398 @@
+#!/usr/bin/python
+
+from frc971.control_loops.python import control_loop
+from frc971.control_loops.python import controls
+import numpy
+import sys
+import argparse
+from matplotlib import pylab
+
+import gflags
+import glog
+
+FLAGS = gflags.FLAGS
+
+gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+
+class CIM(control_loop.ControlLoop):
+  def __init__(self):
+    super(CIM, self).__init__("CIM")
+    # Stall Torque in N m
+    self.stall_torque = 2.42
+    # Stall Current in Amps
+    self.stall_current = 133
+    # Free Speed in RPM
+    self.free_speed = 4650.0
+    # Free Current in Amps
+    self.free_current = 2.7
+    # Moment of inertia of the CIM in kg m^2
+    self.J = 0.0001
+    # Resistance of the motor, divided by 2 to account for the 2 motors
+    self.resistance = 12.0 / self.stall_current
+    # Motor velocity constant
+    self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
+              (12.0 - self.resistance * self.free_current))
+    # Torque constant
+    self.Kt = self.stall_torque / self.stall_current
+    # Control loop time step
+    self.dt = 0.005
+
+    # State feedback matrices
+    self.A_continuous = numpy.matrix(
+        [[-self.Kt / self.Kv / (self.J * self.resistance)]])
+    self.B_continuous = numpy.matrix(
+        [[self.Kt / (self.J * self.resistance)]])
+    self.C = numpy.matrix([[1]])
+    self.D = numpy.matrix([[0]])
+
+    self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                               self.B_continuous, self.dt)
+
+    self.PlaceControllerPoles([0.01])
+    self.PlaceObserverPoles([0.01])
+
+    self.U_max = numpy.matrix([[12.0]])
+    self.U_min = numpy.matrix([[-12.0]])
+
+    self.InitializeState()
+
+
+class Drivetrain(control_loop.ControlLoop):
+  def __init__(self, name="Drivetrain", left_low=True, right_low=True):
+    super(Drivetrain, self).__init__(name)
+    # Number of motors per side
+    self.num_motors = 2
+    # Stall Torque in N m
+    self.stall_torque = 2.42 * self.num_motors * 0.60
+    # Stall Current in Amps
+    self.stall_current = 133.0 * self.num_motors
+    # Free Speed in RPM. Used number from last year.
+    self.free_speed = 5500.0
+    # Free Current in Amps
+    self.free_current = 4.7 * self.num_motors
+    # Moment of inertia of the drivetrain in kg m^2
+    self.J = 2.0
+    # Mass of the robot, in kg.
+    self.m = 68
+    # Radius of the robot, in meters (requires tuning by hand)
+    self.rb = 0.601 / 2.0
+    # Radius of the wheels, in meters.
+    self.r = 0.097155 * 0.9811158901447808 / 118.0 * 115.75
+    # Resistance of the motor, divided by the number of motors.
+    self.resistance = 12.0 / self.stall_current
+    # Motor velocity constant
+    self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
+               (12.0 - self.resistance * self.free_current))
+    # Torque constant
+    self.Kt = self.stall_torque / self.stall_current
+    # Gear ratios
+    self.G_low = 14.0 / 48.0 * 18.0 / 60.0 * 18.0 / 36.0
+    self.G_high = 14.0 / 48.0 * 28.0 / 50.0 * 18.0 / 36.0
+    if left_low:
+      self.Gl = self.G_low
+    else:
+      self.Gl = self.G_high
+    if right_low:
+      self.Gr = self.G_low
+    else:
+      self.Gr = self.G_high
+
+    # Control loop time step
+    self.dt = 0.005
+
+    # These describe the way that a given side of a robot will be influenced
+    # by the other side. Units of 1 / kg.
+    self.msp = 1.0 / self.m + self.rb * self.rb / self.J
+    self.msn = 1.0 / self.m - self.rb * self.rb / self.J
+    # The calculations which we will need for A and B.
+    self.tcl = -self.Kt / self.Kv / (self.Gl * self.Gl * self.resistance * self.r * self.r)
+    self.tcr = -self.Kt / self.Kv / (self.Gr * self.Gr * self.resistance * self.r * self.r)
+    self.mpl = self.Kt / (self.Gl * self.resistance * self.r)
+    self.mpr = self.Kt / (self.Gr * self.resistance * self.r)
+
+    # State feedback matrices
+    # X will be of the format
+    # [[positionl], [velocityl], [positionr], velocityr]]
+    self.A_continuous = numpy.matrix(
+        [[0, 1, 0, 0],
+         [0, self.msp * self.tcl, 0, self.msn * self.tcr],
+         [0, 0, 0, 1],
+         [0, self.msn * self.tcl, 0, self.msp * self.tcr]])
+    self.B_continuous = numpy.matrix(
+        [[0, 0],
+         [self.msp * self.mpl, self.msn * self.mpr],
+         [0, 0],
+         [self.msn * self.mpl, self.msp * self.mpr]])
+    self.C = numpy.matrix([[1, 0, 0, 0],
+                           [0, 0, 1, 0]])
+    self.D = numpy.matrix([[0, 0],
+                           [0, 0]])
+
+    self.A, self.B = self.ContinuousToDiscrete(
+        self.A_continuous, self.B_continuous, self.dt)
+
+    if left_low or right_low:
+      q_pos = 0.12
+      q_vel = 1.0
+    else:
+      q_pos = 0.14
+      q_vel = 0.95
+
+    self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0, 0.0, 0.0],
+                           [0.0, (1.0 / (q_vel ** 2.0)), 0.0, 0.0],
+                           [0.0, 0.0, (1.0 / (q_pos ** 2.0)), 0.0],
+                           [0.0, 0.0, 0.0, (1.0 / (q_vel ** 2.0))]])
+
+    self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0)), 0.0],
+                           [0.0, (1.0 / (12.0 ** 2.0))]])
+    self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
+
+    glog.debug('DT q_pos %f q_vel %s %s', q_pos, q_vel, name)
+    glog.debug(str(numpy.linalg.eig(self.A - self.B * self.K)[0]))
+    glog.debug('K %s', repr(self.K))
+
+    self.hlp = 0.3
+    self.llp = 0.4
+    self.PlaceObserverPoles([self.hlp, self.hlp, self.llp, self.llp])
+
+    self.U_max = numpy.matrix([[12.0], [12.0]])
+    self.U_min = numpy.matrix([[-12.0], [-12.0]])
+
+    self.InitializeState()
+
+
+class KFDrivetrain(Drivetrain):
+  def __init__(self, name="KFDrivetrain", left_low=True, right_low=True):
+    super(KFDrivetrain, self).__init__(name, left_low, right_low)
+
+    self.unaugmented_A_continuous = self.A_continuous
+    self.unaugmented_B_continuous = self.B_continuous
+
+    # The states are
+    # The practical voltage applied to the wheels is
+    #   V_left = U_left + left_voltage_error
+    #
+    # [left position, left velocity, right position, right velocity,
+    #  left voltage error, right voltage error, angular_error]
+    #
+    # The left and right positions are filtered encoder positions and are not
+    # adjusted for heading error.
+    # The turn velocity as computed by the left and right velocities is
+    # adjusted by the gyro velocity.
+    # The angular_error is the angular velocity error between the wheel speed
+    # and the gyro speed.
+    self.A_continuous = numpy.matrix(numpy.zeros((7, 7)))
+    self.B_continuous = numpy.matrix(numpy.zeros((7, 2)))
+    self.A_continuous[0:4,0:4] = self.unaugmented_A_continuous
+    self.A_continuous[0:4,4:6] = self.unaugmented_B_continuous
+    self.B_continuous[0:4,0:2] = self.unaugmented_B_continuous
+    self.A_continuous[0,6] = 1
+    self.A_continuous[2,6] = -1
+
+    self.A, self.B = self.ContinuousToDiscrete(
+        self.A_continuous, self.B_continuous, self.dt)
+
+    self.C = numpy.matrix([[1, 0, 0, 0, 0, 0, 0],
+                           [0, 0, 1, 0, 0, 0, 0],
+                           [0, -0.5 / self.rb, 0, 0.5 / self.rb, 0, 0, 0]])
+
+    self.D = numpy.matrix([[0, 0],
+                           [0, 0],
+                           [0, 0]])
+
+    q_pos = 0.05
+    q_vel = 1.00
+    q_voltage = 10.0
+    q_encoder_uncertainty = 2.00
+
+    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
+                           [0.0, (q_vel ** 2.0), 0.0, 0.0, 0.0, 0.0, 0.0],
+                           [0.0, 0.0, (q_pos ** 2.0), 0.0, 0.0, 0.0, 0.0],
+                           [0.0, 0.0, 0.0, (q_vel ** 2.0), 0.0, 0.0, 0.0],
+                           [0.0, 0.0, 0.0, 0.0, (q_voltage ** 2.0), 0.0, 0.0],
+                           [0.0, 0.0, 0.0, 0.0, 0.0, (q_voltage ** 2.0), 0.0],
+                           [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, (q_encoder_uncertainty ** 2.0)]])
+
+    r_pos =  0.0001
+    r_gyro = 0.000001
+    self.R = numpy.matrix([[(r_pos ** 2.0), 0.0, 0.0],
+                           [0.0, (r_pos ** 2.0), 0.0],
+                           [0.0, 0.0, (r_gyro ** 2.0)]])
+
+    # Solving for kf gains.
+    self.KalmanGain, self.Q_steady = controls.kalman(
+        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+
+    self.L = self.A * self.KalmanGain
+
+    unaug_K = self.K
+
+    # Implement a nice closed loop controller for use by the closed loop
+    # controller.
+    self.K = numpy.matrix(numpy.zeros((self.B.shape[1], self.A.shape[0])))
+    self.K[0:2, 0:4] = unaug_K
+    self.K[0, 4] = 1.0
+    self.K[1, 5] = 1.0
+
+    self.Qff = numpy.matrix(numpy.zeros((4, 4)))
+    qff_pos = 0.005
+    qff_vel = 1.00
+    self.Qff[0, 0] = 1.0 / qff_pos ** 2.0
+    self.Qff[1, 1] = 1.0 / qff_vel ** 2.0
+    self.Qff[2, 2] = 1.0 / qff_pos ** 2.0
+    self.Qff[3, 3] = 1.0 / qff_vel ** 2.0
+    self.Kff = numpy.matrix(numpy.zeros((2, 7)))
+    self.Kff[0:2, 0:4] = controls.TwoStateFeedForwards(self.B[0:4,:], self.Qff)
+
+    self.InitializeState()
+
+
+def main(argv):
+  argv = FLAGS(argv)
+  glog.init()
+
+  # Simulate the response of the system to a step input.
+  drivetrain = Drivetrain(left_low=False, right_low=False)
+  simulated_left = []
+  simulated_right = []
+  for _ in xrange(100):
+    drivetrain.Update(numpy.matrix([[12.0], [12.0]]))
+    simulated_left.append(drivetrain.X[0, 0])
+    simulated_right.append(drivetrain.X[2, 0])
+
+  if FLAGS.plot:
+    pylab.plot(range(100), simulated_left)
+    pylab.plot(range(100), simulated_right)
+    pylab.suptitle('Acceleration Test')
+    pylab.show()
+
+  # Simulate forwards motion.
+  drivetrain = Drivetrain(left_low=False, right_low=False)
+  close_loop_left = []
+  close_loop_right = []
+  left_power = []
+  right_power = []
+  R = numpy.matrix([[1.0], [0.0], [1.0], [0.0]])
+  for _ in xrange(300):
+    U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
+                   drivetrain.U_min, drivetrain.U_max)
+    drivetrain.UpdateObserver(U)
+    drivetrain.Update(U)
+    close_loop_left.append(drivetrain.X[0, 0])
+    close_loop_right.append(drivetrain.X[2, 0])
+    left_power.append(U[0, 0])
+    right_power.append(U[1, 0])
+
+  if FLAGS.plot:
+    pylab.plot(range(300), close_loop_left, label='left position')
+    pylab.plot(range(300), close_loop_right, label='right position')
+    pylab.plot(range(300), left_power, label='left power')
+    pylab.plot(range(300), right_power, label='right power')
+    pylab.suptitle('Linear Move')
+    pylab.legend()
+    pylab.show()
+
+  # Try turning in place
+  drivetrain = Drivetrain()
+  close_loop_left = []
+  close_loop_right = []
+  R = numpy.matrix([[-1.0], [0.0], [1.0], [0.0]])
+  for _ in xrange(100):
+    U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
+                   drivetrain.U_min, drivetrain.U_max)
+    drivetrain.UpdateObserver(U)
+    drivetrain.Update(U)
+    close_loop_left.append(drivetrain.X[0, 0])
+    close_loop_right.append(drivetrain.X[2, 0])
+
+  if FLAGS.plot:
+    pylab.plot(range(100), close_loop_left)
+    pylab.plot(range(100), close_loop_right)
+    pylab.suptitle('Angular Move')
+    pylab.show()
+
+  # Try turning just one side.
+  drivetrain = Drivetrain()
+  close_loop_left = []
+  close_loop_right = []
+  R = numpy.matrix([[0.0], [0.0], [1.0], [0.0]])
+  for _ in xrange(100):
+    U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
+                   drivetrain.U_min, drivetrain.U_max)
+    drivetrain.UpdateObserver(U)
+    drivetrain.Update(U)
+    close_loop_left.append(drivetrain.X[0, 0])
+    close_loop_right.append(drivetrain.X[2, 0])
+
+  if FLAGS.plot:
+    pylab.plot(range(100), close_loop_left)
+    pylab.plot(range(100), close_loop_right)
+    pylab.suptitle('Pivot')
+    pylab.show()
+
+  # Write the generated constants out to a file.
+  drivetrain_low_low = Drivetrain(
+      name="DrivetrainLowLow", left_low=True, right_low=True)
+  drivetrain_low_high = Drivetrain(
+      name="DrivetrainLowHigh", left_low=True, right_low=False)
+  drivetrain_high_low = Drivetrain(
+      name="DrivetrainHighLow", left_low=False, right_low=True)
+  drivetrain_high_high = Drivetrain(
+      name="DrivetrainHighHigh", left_low=False, right_low=False)
+
+  kf_drivetrain_low_low = KFDrivetrain(
+      name="KFDrivetrainLowLow", left_low=True, right_low=True)
+  kf_drivetrain_low_high = KFDrivetrain(
+      name="KFDrivetrainLowHigh", left_low=True, right_low=False)
+  kf_drivetrain_high_low = KFDrivetrain(
+      name="KFDrivetrainHighLow", left_low=False, right_low=True)
+  kf_drivetrain_high_high = KFDrivetrain(
+      name="KFDrivetrainHighHigh", left_low=False, right_low=False)
+
+  if len(argv) != 5:
+    print "Expected .h file name and .cc file name"
+  else:
+    namespaces = ['y2016_bot3', 'control_loops', 'drivetrain']
+    dog_loop_writer = control_loop.ControlLoopWriter(
+        "Drivetrain", [drivetrain_low_low, drivetrain_low_high,
+                       drivetrain_high_low, drivetrain_high_high],
+        namespaces = namespaces)
+    dog_loop_writer.AddConstant(control_loop.Constant("kDt", "%f",
+          drivetrain_low_low.dt))
+    dog_loop_writer.AddConstant(control_loop.Constant("kStallTorque", "%f",
+          drivetrain_low_low.stall_torque))
+    dog_loop_writer.AddConstant(control_loop.Constant("kStallCurrent", "%f",
+          drivetrain_low_low.stall_current))
+    dog_loop_writer.AddConstant(control_loop.Constant("kFreeSpeedRPM", "%f",
+          drivetrain_low_low.free_speed))
+    dog_loop_writer.AddConstant(control_loop.Constant("kFreeCurrent", "%f",
+          drivetrain_low_low.free_current))
+    dog_loop_writer.AddConstant(control_loop.Constant("kJ", "%f",
+          drivetrain_low_low.J))
+    dog_loop_writer.AddConstant(control_loop.Constant("kMass", "%f",
+          drivetrain_low_low.m))
+    dog_loop_writer.AddConstant(control_loop.Constant("kRobotRadius", "%f",
+          drivetrain_low_low.rb))
+    dog_loop_writer.AddConstant(control_loop.Constant("kWheelRadius", "%f",
+          drivetrain_low_low.r))
+    dog_loop_writer.AddConstant(control_loop.Constant("kR", "%f",
+          drivetrain_low_low.resistance))
+    dog_loop_writer.AddConstant(control_loop.Constant("kV", "%f",
+          drivetrain_low_low.Kv))
+    dog_loop_writer.AddConstant(control_loop.Constant("kT", "%f",
+          drivetrain_low_low.Kt))
+    dog_loop_writer.AddConstant(control_loop.Constant("kLowGearRatio", "%f",
+          drivetrain_low_low.G_low))
+    dog_loop_writer.AddConstant(control_loop.Constant("kHighGearRatio", "%f",
+          drivetrain_high_high.G_high))
+
+    dog_loop_writer.Write(argv[1], argv[2])
+
+    kf_loop_writer = control_loop.ControlLoopWriter(
+        "KFDrivetrain", [kf_drivetrain_low_low, kf_drivetrain_low_high,
+                         kf_drivetrain_high_low, kf_drivetrain_high_high],
+        namespaces = namespaces)
+    kf_loop_writer.Write(argv[3], argv[4])
+
+if __name__ == '__main__':
+  sys.exit(main(sys.argv))
diff --git a/y2016_bot3/control_loops/python/intake.py b/y2016_bot3/control_loops/python/intake.py
new file mode 100755
index 0000000..fa34063
--- /dev/null
+++ b/y2016_bot3/control_loops/python/intake.py
@@ -0,0 +1,314 @@
+#!/usr/bin/python
+
+from aos.common.util.trapezoid_profile import TrapezoidProfile
+from frc971.control_loops.python import control_loop
+from frc971.control_loops.python import controls
+import numpy
+import sys
+import matplotlib
+from matplotlib import pylab
+import gflags
+import glog
+
+FLAGS = gflags.FLAGS
+
+try:
+  gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+except gflags.DuplicateFlagError:
+  pass
+
+class Intake(control_loop.ControlLoop):
+  def __init__(self, name="Intake"):
+    super(Intake, self).__init__(name)
+    # TODO(constants): Update all of these & retune poles.
+    # Stall Torque in N m
+    self.stall_torque = 0.71
+    # Stall Current in Amps
+    self.stall_current = 134
+    # Free Speed in RPM
+    self.free_speed = 18730
+    # Free Current in Amps
+    self.free_current = 0.7
+
+    # Resistance of the motor
+    self.R = 12.0 / self.stall_current
+    # Motor velocity constant
+    self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
+               (12.0 - self.R * self.free_current))
+    # Torque constant
+    self.Kt = self.stall_torque / self.stall_current
+    # Gear ratio
+    self.G = (56.0 / 12.0) * (54.0 / 14.0) * (64.0 / 18.0) * (48.0 / 16.0)
+
+    # Moment of inertia, measured in CAD.
+    # Extra mass to compensate for friction is added on.
+    self.J = 0.34 + 0.40
+
+    # Control loop time step
+    self.dt = 0.005
+
+    # State is [position, velocity]
+    # Input is [Voltage]
+
+    C1 = self.G * self.G * self.Kt / (self.R  * self.J * self.Kv)
+    C2 = self.Kt * self.G / (self.J * self.R)
+
+    self.A_continuous = numpy.matrix(
+        [[0, 1],
+         [0, -C1]])
+
+    # Start with the unmodified input
+    self.B_continuous = numpy.matrix(
+        [[0],
+         [C2]])
+
+    self.C = numpy.matrix([[1, 0]])
+    self.D = numpy.matrix([[0]])
+
+    self.A, self.B = self.ContinuousToDiscrete(
+        self.A_continuous, self.B_continuous, self.dt)
+
+    controllability = controls.ctrb(self.A, self.B)
+
+    glog.debug("Free speed is %f", self.free_speed * numpy.pi * 2.0 / 60.0 / self.G)
+
+    q_pos = 0.20
+    q_vel = 5.0
+    self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0],
+                           [0.0, (1.0 / (q_vel ** 2.0))]])
+
+    self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0))]])
+    self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
+
+    q_pos_ff = 0.005
+    q_vel_ff = 1.0
+    self.Qff = numpy.matrix([[(1.0 / (q_pos_ff ** 2.0)), 0.0],
+                             [0.0, (1.0 / (q_vel_ff ** 2.0))]])
+
+    self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
+
+    glog.debug('K %s', repr(self.K))
+    glog.debug('Poles are %s',
+              repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
+
+    self.rpl = 0.30
+    self.ipl = 0.10
+    self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
+                             self.rpl - 1j * self.ipl])
+
+    glog.debug('L is %s', repr(self.L))
+
+    q_pos = 0.10
+    q_vel = 1.65
+    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0],
+                           [0.0, (q_vel ** 2.0)]])
+
+    r_volts = 0.025
+    self.R = numpy.matrix([[(r_volts ** 2.0)]])
+
+    self.KalmanGain, self.Q_steady = controls.kalman(
+        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+
+    glog.debug('Kal %s', repr(self.KalmanGain))
+    self.L = self.A * self.KalmanGain
+    glog.debug('KalL is %s', repr(self.L))
+
+    # The box formed by U_min and U_max must encompass all possible values,
+    # or else Austin's code gets angry.
+    self.U_max = numpy.matrix([[12.0]])
+    self.U_min = numpy.matrix([[-12.0]])
+
+    self.InitializeState()
+
+class IntegralIntake(Intake):
+  def __init__(self, name="IntegralIntake"):
+    super(IntegralIntake, self).__init__(name=name)
+
+    self.A_continuous_unaugmented = self.A_continuous
+    self.B_continuous_unaugmented = self.B_continuous
+
+    self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
+    self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
+    self.A_continuous[0:2, 2] = self.B_continuous_unaugmented
+
+    self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
+    self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
+
+    self.C_unaugmented = self.C
+    self.C = numpy.matrix(numpy.zeros((1, 3)))
+    self.C[0:1, 0:2] = self.C_unaugmented
+
+    self.A, self.B = self.ContinuousToDiscrete(
+        self.A_continuous, self.B_continuous, self.dt)
+
+    q_pos = 0.12
+    q_vel = 2.00
+    q_voltage = 4.0
+    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0],
+                           [0.0, (q_vel ** 2.0), 0.0],
+                           [0.0, 0.0, (q_voltage ** 2.0)]])
+
+    r_pos = 0.05
+    self.R = numpy.matrix([[(r_pos ** 2.0)]])
+
+    self.KalmanGain, self.Q_steady = controls.kalman(
+        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+    self.L = self.A * self.KalmanGain
+
+    self.K_unaugmented = self.K
+    self.K = numpy.matrix(numpy.zeros((1, 3)))
+    self.K[0, 0:2] = self.K_unaugmented
+    self.K[0, 2] = 1
+
+    self.Kff = numpy.concatenate((self.Kff, numpy.matrix(numpy.zeros((1, 1)))), axis=1)
+
+    self.InitializeState()
+
+class ScenarioPlotter(object):
+  def __init__(self):
+    # Various lists for graphing things.
+    self.t = []
+    self.x = []
+    self.v = []
+    self.a = []
+    self.x_hat = []
+    self.u = []
+    self.offset = []
+
+  def run_test(self, intake, end_goal,
+             controller_intake,
+             observer_intake=None,
+             iterations=200):
+    """Runs the intake plant with an initial condition and goal.
+
+      Args:
+        intake: intake object to use.
+        end_goal: end_goal state.
+        controller_intake: Intake object to get K from, or None if we should
+            use intake.
+        observer_intake: Intake object to use for the observer, or None if we should
+            use the actual state.
+        iterations: Number of timesteps to run the model for.
+    """
+
+    if controller_intake is None:
+      controller_intake = intake
+
+    vbat = 12.0
+
+    if self.t:
+      initial_t = self.t[-1] + intake.dt
+    else:
+      initial_t = 0
+
+    goal = numpy.concatenate((intake.X, numpy.matrix(numpy.zeros((1, 1)))), axis=0)
+
+    profile = TrapezoidProfile(intake.dt)
+    profile.set_maximum_acceleration(70.0)
+    profile.set_maximum_velocity(10.0)
+    profile.SetGoal(goal[0, 0])
+
+    U_last = numpy.matrix(numpy.zeros((1, 1)))
+    for i in xrange(iterations):
+      observer_intake.Y = intake.Y
+      observer_intake.CorrectObserver(U_last)
+
+      self.offset.append(observer_intake.X_hat[2, 0])
+      self.x_hat.append(observer_intake.X_hat[0, 0])
+
+      next_goal = numpy.concatenate(
+          (profile.Update(end_goal[0, 0], end_goal[1, 0]),
+           numpy.matrix(numpy.zeros((1, 1)))),
+          axis=0)
+
+      ff_U = controller_intake.Kff * (next_goal - observer_intake.A * goal)
+
+      U_uncapped = controller_intake.K * (goal - observer_intake.X_hat) + ff_U
+      U = U_uncapped.copy()
+      U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
+      self.x.append(intake.X[0, 0])
+
+      if self.v:
+        last_v = self.v[-1]
+      else:
+        last_v = 0
+
+      self.v.append(intake.X[1, 0])
+      self.a.append((self.v[-1] - last_v) / intake.dt)
+
+      offset = 0.0
+      if i > 100:
+        offset = 2.0
+      intake.Update(U + offset)
+
+      observer_intake.PredictObserver(U)
+
+      self.t.append(initial_t + i * intake.dt)
+      self.u.append(U[0, 0])
+
+      ff_U -= U_uncapped - U
+      goal = controller_intake.A * goal + controller_intake.B * ff_U
+
+      if U[0, 0] != U_uncapped[0, 0]:
+        profile.MoveCurrentState(
+            numpy.matrix([[goal[0, 0]], [goal[1, 0]]]))
+
+    glog.debug('Time: %f', self.t[-1])
+    glog.debug('goal_error %s', repr(end_goal - goal))
+    glog.debug('error %s', repr(observer_intake.X_hat - end_goal))
+
+  def Plot(self):
+    pylab.subplot(3, 1, 1)
+    pylab.plot(self.t, self.x, label='x')
+    pylab.plot(self.t, self.x_hat, label='x_hat')
+    pylab.legend()
+
+    pylab.subplot(3, 1, 2)
+    pylab.plot(self.t, self.u, label='u')
+    pylab.plot(self.t, self.offset, label='voltage_offset')
+    pylab.legend()
+
+    pylab.subplot(3, 1, 3)
+    pylab.plot(self.t, self.a, label='a')
+    pylab.legend()
+
+    pylab.show()
+
+
+def main(argv):
+  argv = FLAGS(argv)
+  glog.init()
+
+  scenario_plotter = ScenarioPlotter()
+
+  intake = Intake()
+  intake_controller = IntegralIntake()
+  observer_intake = IntegralIntake()
+
+  # Test moving the intake with constant separation.
+  initial_X = numpy.matrix([[0.0], [0.0]])
+  R = numpy.matrix([[numpy.pi/2.0], [0.0], [0.0]])
+  scenario_plotter.run_test(intake, end_goal=R,
+                            controller_intake=intake_controller,
+                            observer_intake=observer_intake, iterations=200)
+
+  if FLAGS.plot:
+    scenario_plotter.Plot()
+
+  # Write the generated constants out to a file.
+  if len(argv) != 5:
+    glog.fatal('Expected .h file name and .cc file name for the intake and integral intake.')
+  else:
+    namespaces = ['y2016_bot3', 'control_loops', 'intake']
+    intake = Intake("Intake")
+    loop_writer = control_loop.ControlLoopWriter('Intake', [intake],
+                                                 namespaces=namespaces)
+    loop_writer.Write(argv[1], argv[2])
+
+    integral_intake = IntegralIntake("IntegralIntake")
+    integral_loop_writer = control_loop.ControlLoopWriter("IntegralIntake", [integral_intake],
+                                                          namespaces=namespaces)
+    integral_loop_writer.Write(argv[3], argv[4])
+
+if __name__ == '__main__':
+  sys.exit(main(sys.argv))
diff --git a/y2016_bot3/control_loops/python/polydrivetrain.py b/y2016_bot3/control_loops/python/polydrivetrain.py
new file mode 100755
index 0000000..ac85bb6
--- /dev/null
+++ b/y2016_bot3/control_loops/python/polydrivetrain.py
@@ -0,0 +1,501 @@
+#!/usr/bin/python
+
+import numpy
+import sys
+from frc971.control_loops.python import polytope
+from y2016_bot3.control_loops.python import drivetrain
+from frc971.control_loops.python import control_loop
+from frc971.control_loops.python import controls
+from matplotlib import pylab
+
+import gflags
+import glog
+
+__author__ = 'Austin Schuh (austin.linux@gmail.com)'
+
+FLAGS = gflags.FLAGS
+
+try:
+  gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+except gflags.DuplicateFlagError:
+  pass
+
+def CoerceGoal(region, K, w, R):
+  """Intersects a line with a region, and finds the closest point to R.
+
+  Finds a point that is closest to R inside the region, and on the line
+  defined by K X = w.  If it is not possible to find a point on the line,
+  finds a point that is inside the region and closest to the line.  This
+  function assumes that
+
+  Args:
+    region: HPolytope, the valid goal region.
+    K: numpy.matrix (2 x 1), the matrix for the equation [K1, K2] [x1; x2] = w
+    w: float, the offset in the equation above.
+    R: numpy.matrix (2 x 1), the point to be closest to.
+
+  Returns:
+    numpy.matrix (2 x 1), the point.
+  """
+  return DoCoerceGoal(region, K, w, R)[0]
+
+def DoCoerceGoal(region, K, w, R):
+  if region.IsInside(R):
+    return (R, True)
+
+  perpendicular_vector = K.T / numpy.linalg.norm(K)
+  parallel_vector = numpy.matrix([[perpendicular_vector[1, 0]],
+                                  [-perpendicular_vector[0, 0]]])
+
+  # We want to impose the constraint K * X = w on the polytope H * X <= k.
+  # We do this by breaking X up into parallel and perpendicular components to
+  # the half plane.  This gives us the following equation.
+  #
+  #  parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) = X
+  #
+  # Then, substitute this into the polytope.
+  #
+  #  H * (parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) <= k
+  #
+  # Substitute K * X = w
+  #
+  # H * parallel * (parallel.T \dot X) + H * perpendicular * w <= k
+  #
+  # Move all the knowns to the right side.
+  #
+  # H * parallel * ([parallel1 parallel2] * X) <= k - H * perpendicular * w
+  #
+  # Let t = parallel.T \dot X, the component parallel to the surface.
+  #
+  # H * parallel * t <= k - H * perpendicular * w
+  #
+  # This is a polytope which we can solve, and use to figure out the range of X
+  # that we care about!
+
+  t_poly = polytope.HPolytope(
+      region.H * parallel_vector,
+      region.k - region.H * perpendicular_vector * w)
+
+  vertices = t_poly.Vertices()
+
+  if vertices.shape[0]:
+    # The region exists!
+    # Find the closest vertex
+    min_distance = numpy.infty
+    closest_point = None
+    for vertex in vertices:
+      point = parallel_vector * vertex + perpendicular_vector * w
+      length = numpy.linalg.norm(R - point)
+      if length < min_distance:
+        min_distance = length
+        closest_point = point
+
+    return (closest_point, True)
+  else:
+    # Find the vertex of the space that is closest to the line.
+    region_vertices = region.Vertices()
+    min_distance = numpy.infty
+    closest_point = None
+    for vertex in region_vertices:
+      point = vertex.T
+      length = numpy.abs((perpendicular_vector.T * point)[0, 0])
+      if length < min_distance:
+        min_distance = length
+        closest_point = point
+
+    return (closest_point, False)
+
+
+class VelocityDrivetrainModel(control_loop.ControlLoop):
+  def __init__(self, left_low=True, right_low=True, name="VelocityDrivetrainModel"):
+    super(VelocityDrivetrainModel, self).__init__(name)
+    self._drivetrain = drivetrain.Drivetrain(left_low=left_low,
+                                             right_low=right_low)
+    self.dt = 0.005
+    self.A_continuous = numpy.matrix(
+        [[self._drivetrain.A_continuous[1, 1], self._drivetrain.A_continuous[1, 3]],
+         [self._drivetrain.A_continuous[3, 1], self._drivetrain.A_continuous[3, 3]]])
+
+    self.B_continuous = numpy.matrix(
+        [[self._drivetrain.B_continuous[1, 0], self._drivetrain.B_continuous[1, 1]],
+         [self._drivetrain.B_continuous[3, 0], self._drivetrain.B_continuous[3, 1]]])
+    self.C = numpy.matrix(numpy.eye(2))
+    self.D = numpy.matrix(numpy.zeros((2, 2)))
+
+    self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                               self.B_continuous, self.dt)
+
+    # FF * X = U (steady state)
+    self.FF = self.B.I * (numpy.eye(2) - self.A)
+
+    self.PlaceControllerPoles([0.67, 0.67])
+    self.PlaceObserverPoles([0.02, 0.02])
+
+    self.G_high = self._drivetrain.G_high
+    self.G_low = self._drivetrain.G_low
+    self.resistance = self._drivetrain.resistance
+    self.r = self._drivetrain.r
+    self.Kv = self._drivetrain.Kv
+    self.Kt = self._drivetrain.Kt
+
+    self.U_max = self._drivetrain.U_max
+    self.U_min = self._drivetrain.U_min
+
+
+class VelocityDrivetrain(object):
+  HIGH = 'high'
+  LOW = 'low'
+  SHIFTING_UP = 'up'
+  SHIFTING_DOWN = 'down'
+
+  def __init__(self):
+    self.drivetrain_low_low = VelocityDrivetrainModel(
+        left_low=True, right_low=True, name='VelocityDrivetrainLowLow')
+    self.drivetrain_low_high = VelocityDrivetrainModel(left_low=True, right_low=False, name='VelocityDrivetrainLowHigh')
+    self.drivetrain_high_low = VelocityDrivetrainModel(left_low=False, right_low=True, name = 'VelocityDrivetrainHighLow')
+    self.drivetrain_high_high = VelocityDrivetrainModel(left_low=False, right_low=False, name = 'VelocityDrivetrainHighHigh')
+
+    # X is [lvel, rvel]
+    self.X = numpy.matrix(
+        [[0.0],
+         [0.0]])
+
+    self.U_poly = polytope.HPolytope(
+        numpy.matrix([[1, 0],
+                      [-1, 0],
+                      [0, 1],
+                      [0, -1]]),
+        numpy.matrix([[12],
+                      [12],
+                      [12],
+                      [12]]))
+
+    self.U_max = numpy.matrix(
+        [[12.0],
+         [12.0]])
+    self.U_min = numpy.matrix(
+        [[-12.0000000000],
+         [-12.0000000000]])
+
+    self.dt = 0.005
+
+    self.R = numpy.matrix(
+        [[0.0],
+         [0.0]])
+
+    self.U_ideal = numpy.matrix(
+        [[0.0],
+         [0.0]])
+
+    # ttrust is the comprimise between having full throttle negative inertia,
+    # and having no throttle negative inertia.  A value of 0 is full throttle
+    # inertia.  A value of 1 is no throttle negative inertia.
+    self.ttrust = 1.0
+
+    self.left_gear = VelocityDrivetrain.LOW
+    self.right_gear = VelocityDrivetrain.LOW
+    self.left_shifter_position = 0.0
+    self.right_shifter_position = 0.0
+    self.left_cim = drivetrain.CIM()
+    self.right_cim = drivetrain.CIM()
+
+  def IsInGear(self, gear):
+    return gear is VelocityDrivetrain.HIGH or gear is VelocityDrivetrain.LOW
+
+  def MotorRPM(self, shifter_position, velocity):
+    if shifter_position > 0.5:
+      return (velocity / self.CurrentDrivetrain().G_high /
+              self.CurrentDrivetrain().r)
+    else:
+      return (velocity / self.CurrentDrivetrain().G_low /
+              self.CurrentDrivetrain().r)
+
+  def CurrentDrivetrain(self):
+    if self.left_shifter_position > 0.5:
+      if self.right_shifter_position > 0.5:
+        return self.drivetrain_high_high
+      else:
+        return self.drivetrain_high_low
+    else:
+      if self.right_shifter_position > 0.5:
+        return self.drivetrain_low_high
+      else:
+        return self.drivetrain_low_low
+
+  def SimShifter(self, gear, shifter_position):
+    if gear is VelocityDrivetrain.HIGH or gear is VelocityDrivetrain.SHIFTING_UP:
+      shifter_position = min(shifter_position + 0.5, 1.0)
+    else:
+      shifter_position = max(shifter_position - 0.5, 0.0)
+
+    if shifter_position == 1.0:
+      gear = VelocityDrivetrain.HIGH
+    elif shifter_position == 0.0:
+      gear = VelocityDrivetrain.LOW
+
+    return gear, shifter_position
+
+  def ComputeGear(self, wheel_velocity, should_print=False, current_gear=False, gear_name=None):
+    high_omega = (wheel_velocity / self.CurrentDrivetrain().G_high /
+                  self.CurrentDrivetrain().r)
+    low_omega = (wheel_velocity / self.CurrentDrivetrain().G_low /
+                 self.CurrentDrivetrain().r)
+    #print gear_name, "Motor Energy Difference.", 0.5 * 0.000140032647 * (low_omega * low_omega - high_omega * high_omega), "joules"
+    high_torque = ((12.0 - high_omega / self.CurrentDrivetrain().Kv) *
+                   self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().resistance)
+    low_torque = ((12.0 - low_omega / self.CurrentDrivetrain().Kv) *
+                  self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().resistance)
+    high_power = high_torque * high_omega
+    low_power = low_torque * low_omega
+    #if should_print:
+    #  print gear_name, "High omega", high_omega, "Low omega", low_omega
+    #  print gear_name, "High torque", high_torque, "Low torque", low_torque
+    #  print gear_name, "High power", high_power, "Low power", low_power
+
+    # Shift algorithm improvements.
+    # TODO(aschuh):
+    # It takes time to shift.  Shifting down for 1 cycle doesn't make sense
+    # because you will end up slower than without shifting.  Figure out how
+    # to include that info.
+    # If the driver is still in high gear, but isn't asking for the extra power
+    # from low gear, don't shift until he asks for it.
+    goal_gear_is_high = high_power > low_power
+    #goal_gear_is_high = True
+
+    if not self.IsInGear(current_gear):
+      glog.debug('%s Not in gear.', gear_name)
+      return current_gear
+    else:
+      is_high = current_gear is VelocityDrivetrain.HIGH
+      if is_high != goal_gear_is_high:
+        if goal_gear_is_high:
+          glog.debug('%s Shifting up.', gear_name)
+          return VelocityDrivetrain.SHIFTING_UP
+        else:
+          glog.debug('%s Shifting down.', gear_name)
+          return VelocityDrivetrain.SHIFTING_DOWN
+      else:
+        return current_gear
+
+  def FilterVelocity(self, throttle):
+    # Invert the plant to figure out how the velocity filter would have to work
+    # out in order to filter out the forwards negative inertia.
+    # This math assumes that the left and right power and velocity are equal.
+
+    # The throttle filter should filter such that the motor in the highest gear
+    # should be controlling the time constant.
+    # Do this by finding the index of FF that has the lowest value, and computing
+    # the sums using that index.
+    FF_sum = self.CurrentDrivetrain().FF.sum(axis=1)
+    min_FF_sum_index = numpy.argmin(FF_sum)
+    min_FF_sum = FF_sum[min_FF_sum_index, 0]
+    min_K_sum = self.CurrentDrivetrain().K[min_FF_sum_index, :].sum()
+    # Compute the FF sum for high gear.
+    high_min_FF_sum = self.drivetrain_high_high.FF[0, :].sum()
+
+    # U = self.K[0, :].sum() * (R - x_avg) + self.FF[0, :].sum() * R
+    # throttle * 12.0 = (self.K[0, :].sum() + self.FF[0, :].sum()) * R
+    #                   - self.K[0, :].sum() * x_avg
+
+    # R = (throttle * 12.0 + self.K[0, :].sum() * x_avg) /
+    #     (self.K[0, :].sum() + self.FF[0, :].sum())
+
+    # U = (K + FF) * R - K * X
+    # (K + FF) ^-1 * (U + K * X) = R
+
+    # Scale throttle by min_FF_sum / high_min_FF_sum.  This will make low gear
+    # have the same velocity goal as high gear, and so that the robot will hold
+    # the same speed for the same throttle for all gears.
+    adjusted_ff_voltage = numpy.clip(throttle * 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0)
+    return ((adjusted_ff_voltage + self.ttrust * min_K_sum * (self.X[0, 0] + self.X[1, 0]) / 2.0)
+            / (self.ttrust * min_K_sum + min_FF_sum))
+
+  def Update(self, throttle, steering):
+    # Shift into the gear which sends the most power to the floor.
+    # This is the same as sending the most torque down to the floor at the
+    # wheel.
+
+    self.left_gear = self.right_gear = True
+    if True:
+      self.left_gear = self.ComputeGear(self.X[0, 0], should_print=True,
+                                        current_gear=self.left_gear,
+                                        gear_name="left")
+      self.right_gear = self.ComputeGear(self.X[1, 0], should_print=True,
+                                         current_gear=self.right_gear,
+                                         gear_name="right")
+      if self.IsInGear(self.left_gear):
+        self.left_cim.X[0, 0] = self.MotorRPM(self.left_shifter_position, self.X[0, 0])
+
+      if self.IsInGear(self.right_gear):
+        self.right_cim.X[0, 0] = self.MotorRPM(self.right_shifter_position, self.X[0, 0])
+
+    if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
+      # Filter the throttle to provide a nicer response.
+      fvel = self.FilterVelocity(throttle)
+
+      # Constant radius means that angualar_velocity / linear_velocity = constant.
+      # Compute the left and right velocities.
+      steering_velocity = numpy.abs(fvel) * steering
+      left_velocity = fvel - steering_velocity
+      right_velocity = fvel + steering_velocity
+
+      # Write this constraint in the form of K * R = w
+      # angular velocity / linear velocity = constant
+      # (left - right) / (left + right) = constant
+      # left - right = constant * left + constant * right
+
+      # (fvel - steering * numpy.abs(fvel) - fvel - steering * numpy.abs(fvel)) /
+      #  (fvel - steering * numpy.abs(fvel) + fvel + steering * numpy.abs(fvel)) =
+      #       constant
+      # (- 2 * steering * numpy.abs(fvel)) / (2 * fvel) = constant
+      # (-steering * sign(fvel)) = constant
+      # (-steering * sign(fvel)) * (left + right) = left - right
+      # (steering * sign(fvel) + 1) * left + (steering * sign(fvel) - 1) * right = 0
+
+      equality_k = numpy.matrix(
+          [[1 + steering * numpy.sign(fvel), -(1 - steering * numpy.sign(fvel))]])
+      equality_w = 0.0
+
+      self.R[0, 0] = left_velocity
+      self.R[1, 0] = right_velocity
+
+      # Construct a constraint on R by manipulating the constraint on U
+      # Start out with H * U <= k
+      # U = FF * R + K * (R - X)
+      # H * (FF * R + K * R - K * X) <= k
+      # H * (FF + K) * R <= k + H * K * X
+      R_poly = polytope.HPolytope(
+          self.U_poly.H * (self.CurrentDrivetrain().K + self.CurrentDrivetrain().FF),
+          self.U_poly.k + self.U_poly.H * self.CurrentDrivetrain().K * self.X)
+
+      # Limit R back inside the box.
+      self.boxed_R = CoerceGoal(R_poly, equality_k, equality_w, self.R)
+
+      FF_volts = self.CurrentDrivetrain().FF * self.boxed_R
+      self.U_ideal = self.CurrentDrivetrain().K * (self.boxed_R - self.X) + FF_volts
+    else:
+      glog.debug('Not all in gear')
+      if not self.IsInGear(self.left_gear) and not self.IsInGear(self.right_gear):
+        # TODO(austin): Use battery volts here.
+        R_left = self.MotorRPM(self.left_shifter_position, self.X[0, 0])
+        self.U_ideal[0, 0] = numpy.clip(
+            self.left_cim.K * (R_left - self.left_cim.X) + R_left / self.left_cim.Kv,
+            self.left_cim.U_min, self.left_cim.U_max)
+        self.left_cim.Update(self.U_ideal[0, 0])
+
+        R_right = self.MotorRPM(self.right_shifter_position, self.X[1, 0])
+        self.U_ideal[1, 0] = numpy.clip(
+            self.right_cim.K * (R_right - self.right_cim.X) + R_right / self.right_cim.Kv,
+            self.right_cim.U_min, self.right_cim.U_max)
+        self.right_cim.Update(self.U_ideal[1, 0])
+      else:
+        assert False
+
+    self.U = numpy.clip(self.U_ideal, self.U_min, self.U_max)
+
+    # TODO(austin): Model the robot as not accelerating when you shift...
+    # This hack only works when you shift at the same time.
+    if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
+      self.X = self.CurrentDrivetrain().A * self.X + self.CurrentDrivetrain().B * self.U
+
+    self.left_gear, self.left_shifter_position = self.SimShifter(
+        self.left_gear, self.left_shifter_position)
+    self.right_gear, self.right_shifter_position = self.SimShifter(
+        self.right_gear, self.right_shifter_position)
+
+    glog.debug('U is %s %s', str(self.U[0, 0]), str(self.U[1, 0]))
+    glog.debug('Left shifter %s %d Right shifter %s %d',
+               self.left_gear, self.left_shifter_position,
+               self.right_gear, self.right_shifter_position)
+
+
+def main(argv):
+  argv = FLAGS(argv)
+
+  vdrivetrain = VelocityDrivetrain()
+
+  if not FLAGS.plot:
+    if len(argv) != 5:
+      glog.fatal('Expected .h file name and .cc file name')
+    else:
+      namespaces = ['y2016_bot3', 'control_loops', 'drivetrain']
+      dog_loop_writer = control_loop.ControlLoopWriter(
+          "VelocityDrivetrain", [vdrivetrain.drivetrain_low_low,
+                         vdrivetrain.drivetrain_low_high,
+                         vdrivetrain.drivetrain_high_low,
+                         vdrivetrain.drivetrain_high_high],
+                         namespaces=namespaces)
+
+      dog_loop_writer.Write(argv[1], argv[2])
+
+      cim_writer = control_loop.ControlLoopWriter(
+          "CIM", [drivetrain.CIM()])
+
+      cim_writer.Write(argv[3], argv[4])
+      return
+
+  vl_plot = []
+  vr_plot = []
+  ul_plot = []
+  ur_plot = []
+  radius_plot = []
+  t_plot = []
+  left_gear_plot = []
+  right_gear_plot = []
+  vdrivetrain.left_shifter_position = 0.0
+  vdrivetrain.right_shifter_position = 0.0
+  vdrivetrain.left_gear = VelocityDrivetrain.LOW
+  vdrivetrain.right_gear = VelocityDrivetrain.LOW
+
+  glog.debug('K is %s', str(vdrivetrain.CurrentDrivetrain().K))
+
+  if vdrivetrain.left_gear is VelocityDrivetrain.HIGH:
+    glog.debug('Left is high')
+  else:
+    glog.debug('Left is low')
+  if vdrivetrain.right_gear is VelocityDrivetrain.HIGH:
+    glog.debug('Right is high')
+  else:
+    glog.debug('Right is low')
+
+  for t in numpy.arange(0, 1.7, vdrivetrain.dt):
+    if t < 0.5:
+      vdrivetrain.Update(throttle=0.00, steering=1.0)
+    elif t < 1.2:
+      vdrivetrain.Update(throttle=0.5, steering=1.0)
+    else:
+      vdrivetrain.Update(throttle=0.00, steering=1.0)
+    t_plot.append(t)
+    vl_plot.append(vdrivetrain.X[0, 0])
+    vr_plot.append(vdrivetrain.X[1, 0])
+    ul_plot.append(vdrivetrain.U[0, 0])
+    ur_plot.append(vdrivetrain.U[1, 0])
+    left_gear_plot.append((vdrivetrain.left_gear is VelocityDrivetrain.HIGH) * 2.0 - 10.0)
+    right_gear_plot.append((vdrivetrain.right_gear is VelocityDrivetrain.HIGH) * 2.0 - 10.0)
+
+    fwd_velocity = (vdrivetrain.X[1, 0] + vdrivetrain.X[0, 0]) / 2
+    turn_velocity = (vdrivetrain.X[1, 0] - vdrivetrain.X[0, 0])
+    if abs(fwd_velocity) < 0.0000001:
+      radius_plot.append(turn_velocity)
+    else:
+      radius_plot.append(turn_velocity / fwd_velocity)
+
+  # TODO(austin):
+  # Shifting compensation.
+
+  # Tighten the turn.
+  # Closed loop drive.
+
+  pylab.plot(t_plot, vl_plot, label='left velocity')
+  pylab.plot(t_plot, vr_plot, label='right velocity')
+  pylab.plot(t_plot, ul_plot, label='left voltage')
+  pylab.plot(t_plot, ur_plot, label='right voltage')
+  pylab.plot(t_plot, radius_plot, label='radius')
+  pylab.plot(t_plot, left_gear_plot, label='left gear high')
+  pylab.plot(t_plot, right_gear_plot, label='right gear high')
+  pylab.legend()
+  pylab.show()
+  return 0
+
+if __name__ == '__main__':
+  sys.exit(main(sys.argv))
diff --git a/y2016_bot3/control_loops/python/polydrivetrain_test.py b/y2016_bot3/control_loops/python/polydrivetrain_test.py
new file mode 100755
index 0000000..434cdca
--- /dev/null
+++ b/y2016_bot3/control_loops/python/polydrivetrain_test.py
@@ -0,0 +1,82 @@
+#!/usr/bin/python
+
+import polydrivetrain
+import numpy
+from numpy.testing import *
+import polytope
+import unittest
+
+__author__ = 'Austin Schuh (austin.linux@gmail.com)'
+
+
+class TestVelocityDrivetrain(unittest.TestCase):
+  def MakeBox(self, x1_min, x1_max, x2_min, x2_max):
+    H = numpy.matrix([[1, 0],
+                      [-1, 0],
+                      [0, 1],
+                      [0, -1]])
+    K = numpy.matrix([[x1_max],
+                      [-x1_min],
+                      [x2_max],
+                      [-x2_min]])
+    return polytope.HPolytope(H, K)
+
+  def test_coerce_inside(self):
+    """Tests coercion when the point is inside the box."""
+    box = self.MakeBox(1, 2, 1, 2)
+
+    # x1 = x2
+    K = numpy.matrix([[1, -1]])
+    w = 0
+
+    assert_array_equal(polydrivetrain.CoerceGoal(box, K, w,
+                                                 numpy.matrix([[1.5], [1.5]])),
+                       numpy.matrix([[1.5], [1.5]]))
+
+  def test_coerce_outside_intersect(self):
+    """Tests coercion when the line intersects the box."""
+    box = self.MakeBox(1, 2, 1, 2)
+
+    # x1 = x2
+    K = numpy.matrix([[1, -1]])
+    w = 0
+
+    assert_array_equal(polydrivetrain.CoerceGoal(box, K, w, numpy.matrix([[5], [5]])),
+                       numpy.matrix([[2.0], [2.0]]))
+
+  def test_coerce_outside_no_intersect(self):
+    """Tests coercion when the line does not intersect the box."""
+    box = self.MakeBox(3, 4, 1, 2)
+
+    # x1 = x2
+    K = numpy.matrix([[1, -1]])
+    w = 0
+
+    assert_array_equal(polydrivetrain.CoerceGoal(box, K, w, numpy.matrix([[5], [5]])),
+                       numpy.matrix([[3.0], [2.0]]))
+
+  def test_coerce_middle_of_edge(self):
+    """Tests coercion when the line intersects the middle of an edge."""
+    box = self.MakeBox(0, 4, 1, 2)
+
+    # x1 = x2
+    K = numpy.matrix([[-1, 1]])
+    w = 0
+
+    assert_array_equal(polydrivetrain.CoerceGoal(box, K, w, numpy.matrix([[5], [5]])),
+                       numpy.matrix([[2.0], [2.0]]))
+
+  def test_coerce_perpendicular_line(self):
+    """Tests coercion when the line does not intersect and is in quadrant 2."""
+    box = self.MakeBox(1, 2, 1, 2)
+
+    # x1 = -x2
+    K = numpy.matrix([[1, 1]])
+    w = 0
+
+    assert_array_equal(polydrivetrain.CoerceGoal(box, K, w, numpy.matrix([[5], [5]])),
+                       numpy.matrix([[1.0], [1.0]]))
+
+
+if __name__ == '__main__':
+  unittest.main()
diff --git a/y2016_bot3/joystick_reader.cc b/y2016_bot3/joystick_reader.cc
new file mode 100644
index 0000000..a02142d
--- /dev/null
+++ b/y2016_bot3/joystick_reader.cc
@@ -0,0 +1,271 @@
+#include <stdio.h>
+#include <string.h>
+#include <unistd.h>
+#include <math.h>
+
+#include "aos/linux_code/init.h"
+#include "aos/input/joystick_input.h"
+#include "aos/common/input/driver_station_data.h"
+#include "aos/common/logging/logging.h"
+#include "aos/common/util/log_interval.h"
+#include "aos/common/time.h"
+#include "aos/common/actions/actions.h"
+
+#include "frc971/control_loops/drivetrain/drivetrain.q.h"
+#include "y2016_bot3/control_loops/intake/intake.q.h"
+#include "y2016_bot3/control_loops/intake/intake.h"
+#include "y2016_bot3/queues/ball_detector.q.h"
+
+#include "frc971/queues/gyro.q.h"
+#include "frc971/autonomous/auto.q.h"
+#include "y2016_bot3/actors/autonomous_actor.h"
+#include "y2016_bot3/control_loops/drivetrain/drivetrain_base.h"
+
+using ::frc971::control_loops::drivetrain_queue;
+using ::y2016_bot3::control_loops::intake_queue;
+
+using ::aos::input::driver_station::ButtonLocation;
+using ::aos::input::driver_station::ControlBit;
+using ::aos::input::driver_station::JoystickAxis;
+using ::aos::input::driver_station::POVLocation;
+
+namespace y2016_bot3 {
+namespace input {
+namespace joysticks {
+
+const JoystickAxis kSteeringWheel(1, 1), kDriveThrottle(2, 2);
+const ButtonLocation kQuickTurn(1, 5);
+
+const ButtonLocation kTurn1(1, 7);
+const ButtonLocation kTurn2(1, 11);
+
+// Buttons on the lexan driver station to get things running on bring-up day.
+const ButtonLocation kIntakeDown(3, 11);
+const ButtonLocation kIntakeIn(3, 12);
+const ButtonLocation kFire(3, 3);
+const ButtonLocation kIntakeOut(3, 9);
+const ButtonLocation kChevalDeFrise(3, 8);
+
+class Reader : public ::aos::input::JoystickInput {
+ public:
+  Reader()
+      : intake_goal_(0.0),
+        dt_config_(control_loops::drivetrain::GetDrivetrainConfig()) {}
+
+  void RunIteration(const ::aos::input::driver_station::Data &data) override {
+    bool last_auto_running = auto_running_;
+    auto_running_ = data.GetControlBit(ControlBit::kAutonomous) &&
+                    data.GetControlBit(ControlBit::kEnabled);
+    if (auto_running_ != last_auto_running) {
+      if (auto_running_) {
+        StartAuto();
+      } else {
+        StopAuto();
+      }
+    }
+
+    if (!data.GetControlBit(ControlBit::kEnabled)) {
+      // If we are not enabled, reset the waiting for zero bit.
+      LOG(DEBUG, "Waiting for zero.\n");
+      waiting_for_zero_ = true;
+    }
+
+    if (!auto_running_) {
+      HandleDrivetrain(data);
+      HandleTeleop(data);
+    }
+
+    // Process any pending actions.
+    action_queue_.Tick();
+    was_running_ = action_queue_.Running();
+  }
+
+  void HandleDrivetrain(const ::aos::input::driver_station::Data &data) {
+    bool is_control_loop_driving = false;
+    static double left_goal = 0.0;
+    static double right_goal = 0.0;
+
+    const double wheel = -data.GetAxis(kSteeringWheel);
+    const double throttle = -data.GetAxis(kDriveThrottle);
+    drivetrain_queue.status.FetchLatest();
+
+    if (data.PosEdge(kTurn1) || data.PosEdge(kTurn2)) {
+      if (drivetrain_queue.status.get()) {
+        left_goal = drivetrain_queue.status->estimated_left_position;
+        right_goal = drivetrain_queue.status->estimated_right_position;
+      }
+    }
+    if (data.IsPressed(kTurn1) || data.IsPressed(kTurn2)) {
+      is_control_loop_driving = true;
+    }
+    if (!drivetrain_queue.goal.MakeWithBuilder()
+             .steering(wheel)
+             .throttle(throttle)
+             .quickturn(data.IsPressed(kQuickTurn))
+             .control_loop_driving(is_control_loop_driving)
+             .left_goal(left_goal - wheel * 0.5 + throttle * 0.3)
+             .right_goal(right_goal + wheel * 0.5 + throttle * 0.3)
+             .left_velocity_goal(0)
+             .right_velocity_goal(0)
+             .Send()) {
+      LOG(WARNING, "sending stick values failed\n");
+    }
+  }
+
+  void HandleTeleop(const ::aos::input::driver_station::Data &data) {
+    intake_goal_ = y2016_bot3::constants::kIntakeRange.upper - 0.04;
+
+    if (!data.GetControlBit(ControlBit::kEnabled)) {
+      action_queue_.CancelAllActions();
+      LOG(DEBUG, "Canceling\n");
+    }
+
+    intake_queue.status.FetchLatest();
+    if (!intake_queue.status.get()) {
+      LOG(ERROR, "Got no intake status packet.\n");
+    }
+
+    if (intake_queue.status.get() && intake_queue.status->zeroed) {
+      if (waiting_for_zero_) {
+        LOG(DEBUG, "Zeroed! Starting teleop mode.\n");
+        waiting_for_zero_ = false;
+      }
+    } else {
+      waiting_for_zero_ = true;
+    }
+
+    bool ball_detected = false;
+    ::y2016_bot3::sensors::ball_detector.FetchLatest();
+    if (::y2016_bot3::sensors::ball_detector.get()) {
+      ball_detected = ::y2016_bot3::sensors::ball_detector->voltage > 2.5;
+    }
+    if (data.PosEdge(kIntakeIn)) {
+      saw_ball_when_started_intaking_ = ball_detected;
+    }
+
+    if (data.IsPressed(kIntakeIn)) {
+      is_intaking_ = (!ball_detected || saw_ball_when_started_intaking_);
+    } else {
+      is_intaking_ = false;
+    }
+
+    is_outtaking_ = data.IsPressed(kIntakeOut);
+
+    if (is_intaking_ || is_outtaking_) {
+      recently_intaking_accumulator_ = 20;
+    }
+
+    if (data.IsPressed(kIntakeDown)) {
+      if (recently_intaking_accumulator_) {
+        intake_goal_ = 0.1;
+      } else {
+        intake_goal_ = -0.05;
+      }
+    }
+
+    if (recently_intaking_accumulator_ > 0) {
+      --recently_intaking_accumulator_;
+    }
+
+    if (data.IsPressed(kChevalDeFrise)) {
+      traverse_unlatched_ = false;
+      traverse_down_ = true;
+    } else {
+      traverse_unlatched_ = true;
+      traverse_down_ = false;
+    }
+
+    if (!waiting_for_zero_) {
+      auto new_intake_goal = intake_queue.goal.MakeMessage();
+      new_intake_goal->angle_intake = intake_goal_;
+
+      new_intake_goal->max_angular_velocity_intake = 7.0;
+      new_intake_goal->max_angular_acceleration_intake = 40.0;
+
+      // Granny mode
+      /*
+      new_intake_goal->max_angular_velocity_intake = 0.2;
+      new_intake_goal->max_angular_acceleration_intake = 1.0;
+      */
+      if (is_intaking_) {
+        new_intake_goal->voltage_top_rollers = 12.0;
+        new_intake_goal->voltage_bottom_rollers = 12.0;
+      } else if (is_outtaking_) {
+        new_intake_goal->voltage_top_rollers = -12.0;
+        new_intake_goal->voltage_bottom_rollers = -7.0;
+      } else {
+        new_intake_goal->voltage_top_rollers = 0.0;
+        new_intake_goal->voltage_bottom_rollers = 0.0;
+      }
+
+      new_intake_goal->traverse_unlatched = traverse_unlatched_;
+      new_intake_goal->traverse_down = traverse_down_;
+      new_intake_goal->force_intake = true;
+
+      if (!new_intake_goal.Send()) {
+        LOG(ERROR, "Sending intake goal failed.\n");
+      } else {
+        LOG(DEBUG, "sending goal: intake: %f\n", intake_goal_);
+      }
+    }
+  }
+
+ private:
+  void StartAuto() {
+    LOG(INFO, "Starting auto mode\n");
+
+    actors::AutonomousActionParams params;
+    actors::auto_mode.FetchLatest();
+    if (actors::auto_mode.get() != nullptr) {
+      params.mode = actors::auto_mode->mode;
+    } else {
+      LOG(WARNING, "no auto mode values\n");
+      params.mode = 0;
+    }
+    action_queue_.EnqueueAction(actors::MakeAutonomousAction(params));
+  }
+
+  void StopAuto() {
+    LOG(INFO, "Stopping auto mode\n");
+    action_queue_.CancelAllActions();
+  }
+
+  // Whatever these are set to are our default goals to send out after zeroing.
+  double intake_goal_;
+
+  bool was_running_ = false;
+  bool auto_running_ = false;
+
+  bool traverse_unlatched_ = false;
+  bool traverse_down_ = false;
+
+  // If we're waiting for the subsystems to zero.
+  bool waiting_for_zero_ = true;
+
+  // If true, the ball was present when the intaking button was pressed.
+  bool saw_ball_when_started_intaking_ = false;
+
+  bool is_intaking_ = false;
+  bool is_outtaking_ = false;
+
+  int recently_intaking_accumulator_ = 0;
+
+  ::aos::common::actions::ActionQueue action_queue_;
+
+  const ::frc971::control_loops::drivetrain::DrivetrainConfig dt_config_;
+
+  ::aos::util::SimpleLogInterval no_drivetrain_status_ =
+      ::aos::util::SimpleLogInterval(::aos::time::Time::InSeconds(0.2), WARNING,
+                                     "no drivetrain status");
+};
+
+}  // namespace joysticks
+}  // namespace input
+}  // namespace y2016_bot3
+
+int main() {
+  ::aos::Init(-1);
+  ::y2016_bot3::input::joysticks::Reader reader;
+  reader.Run();
+  ::aos::Cleanup();
+}
diff --git a/y2016_bot3/queues/BUILD b/y2016_bot3/queues/BUILD
new file mode 100644
index 0000000..81f75d4
--- /dev/null
+++ b/y2016_bot3/queues/BUILD
@@ -0,0 +1,17 @@
+package(default_visibility = ['//visibility:public'])
+
+load('/aos/build/queues', 'queue_library')
+
+queue_library(
+  name = 'ball_detector',
+  srcs = [
+    'ball_detector.q',
+  ],
+)
+
+queue_library(
+  name = 'profile_params',
+  srcs = [
+    'profile_params.q',
+  ],
+)
diff --git a/y2016_bot3/queues/ball_detector.q b/y2016_bot3/queues/ball_detector.q
new file mode 100644
index 0000000..bd2e02f
--- /dev/null
+++ b/y2016_bot3/queues/ball_detector.q
@@ -0,0 +1,13 @@
+package y2016_bot3.sensors;
+
+message BallDetector {
+  // Voltage measured by the ball detector sensor.
+
+  // Higher voltage means ball is closer to detector, lower voltage means ball
+  // is far from the sensor or not in the robot at all.
+  // TODO(comran): Check to see if our sensor's output corresponds with the
+  // comment above.
+
+  double voltage;
+};
+queue BallDetector ball_detector;
diff --git a/y2016_bot3/queues/profile_params.q b/y2016_bot3/queues/profile_params.q
new file mode 100644
index 0000000..351682d
--- /dev/null
+++ b/y2016_bot3/queues/profile_params.q
@@ -0,0 +1,6 @@
+package y2016_bot3;
+
+struct ProfileParams {
+  double velocity;
+  double acceleration;
+};
diff --git a/y2016_bot3/wpilib/BUILD b/y2016_bot3/wpilib/BUILD
new file mode 100644
index 0000000..e86eacc
--- /dev/null
+++ b/y2016_bot3/wpilib/BUILD
@@ -0,0 +1,43 @@
+package(default_visibility = ['//visibility:public'])
+
+cc_binary(
+  name = 'wpilib_interface',
+  srcs = [
+    'wpilib_interface.cc',
+  ],
+  deps = [
+    '//aos/common:stl_mutex',
+    '//aos/common/logging',
+    '//aos/common:math',
+    '//aos/common/controls:control_loop',
+    '//aos/common/util:log_interval',
+    '//aos/common:time',
+    '//aos/common/logging:queue_logging',
+    '//aos/common/messages:robot_state',
+    '//aos/common/util:phased_loop',
+    '//aos/common/util:wrapping_counter',
+    '//aos/linux_code:init',
+    '//third_party/allwpilib_2016:wpilib',
+    '//frc971/control_loops/drivetrain:drivetrain_queue',
+    '//frc971/control_loops:queues',
+    '//frc971/wpilib:joystick_sender',
+    '//frc971/wpilib:loop_output_handler',
+    '//frc971/wpilib:buffered_pcm',
+    '//frc971/wpilib:gyro_sender',
+    '//frc971/wpilib:dma_edge_counting',
+    '//frc971/wpilib:interrupt_edge_counting',
+    '//frc971/wpilib:wpilib_robot_base',
+    '//frc971/wpilib:encoder_and_potentiometer',
+    '//frc971/wpilib:logging_queue',
+    '//frc971/wpilib:wpilib_interface',
+    '//frc971/wpilib:pdp_fetcher',
+    '//frc971/wpilib:ADIS16448',
+    '//frc971/wpilib:dma',
+    '//y2016_bot3/control_loops/drivetrain:polydrivetrain_plants',
+    '//y2016_bot3/control_loops/intake:intake_queue',
+    '//y2016_bot3/queues:ball_detector',
+    '//y2016_bot3/actors:autonomous_action_queue',
+    '//y2016_bot3/control_loops/intake:intake_lib',
+    '//y2016_bot3/control_loops/drivetrain:drivetrain_base',
+  ],
+)
diff --git a/y2016_bot3/wpilib/wpilib_interface.cc b/y2016_bot3/wpilib/wpilib_interface.cc
new file mode 100644
index 0000000..59dce44
--- /dev/null
+++ b/y2016_bot3/wpilib/wpilib_interface.cc
@@ -0,0 +1,507 @@
+#include <stdio.h>
+#include <string.h>
+#include <unistd.h>
+#include <inttypes.h>
+
+#include <thread>
+#include <mutex>
+#include <functional>
+#include <array>
+
+#include "Encoder.h"
+#include "Talon.h"
+#include "Relay.h"
+#include "DriverStation.h"
+#include "AnalogInput.h"
+#include "Compressor.h"
+#include "frc971/wpilib/wpilib_robot_base.h"
+#include "DigitalGlitchFilter.h"
+#undef ERROR
+
+#include "aos/common/logging/logging.h"
+#include "aos/common/logging/queue_logging.h"
+#include "aos/common/time.h"
+#include "aos/common/util/log_interval.h"
+#include "aos/common/util/phased_loop.h"
+#include "aos/common/util/wrapping_counter.h"
+#include "aos/common/stl_mutex.h"
+#include "aos/linux_code/init.h"
+#include "aos/common/messages/robot_state.q.h"
+#include "aos/common/commonmath.h"
+
+#include "frc971/control_loops/control_loops.q.h"
+#include "frc971/control_loops/drivetrain/drivetrain.q.h"
+#include "y2016_bot3/control_loops/drivetrain/drivetrain_dog_motor_plant.h"
+#include "y2016_bot3/control_loops/intake/intake.q.h"
+#include "y2016_bot3/queues/ball_detector.q.h"
+#include "y2016_bot3/actors/autonomous_action.q.h"
+
+#include "frc971/wpilib/joystick_sender.h"
+#include "frc971/wpilib/loop_output_handler.h"
+#include "frc971/wpilib/buffered_solenoid.h"
+#include "frc971/wpilib/buffered_pcm.h"
+#include "frc971/wpilib/gyro_sender.h"
+#include "frc971/wpilib/dma_edge_counting.h"
+#include "frc971/wpilib/interrupt_edge_counting.h"
+#include "frc971/wpilib/encoder_and_potentiometer.h"
+#include "frc971/wpilib/logging.q.h"
+#include "frc971/wpilib/wpilib_interface.h"
+#include "frc971/wpilib/pdp_fetcher.h"
+#include "frc971/wpilib/dma.h"
+
+#include "y2016_bot3/control_loops/intake/intake.h"
+#include "y2016_bot3/control_loops/drivetrain/drivetrain_base.h"
+
+#ifndef M_PI
+#define M_PI 3.14159265358979323846
+#endif
+
+using ::frc971::control_loops::drivetrain_queue;
+using ::y2016_bot3::control_loops::intake_queue;
+
+namespace y2016_bot3 {
+namespace constants {
+IntakeZero intake_zero;
+}
+namespace wpilib {
+namespace {
+constexpr double kMaxBringupPower = 12.0;
+}  // namespace
+
+// TODO(Brian): Fix the interpretation of the result of GetRaw here and in the
+// DMA stuff and then removing the * 2.0 in *_translate.
+// The low bit is direction.
+
+// TODO(brian): Replace this with ::std::make_unique once all our toolchains
+// have support.
+template <class T, class... U>
+std::unique_ptr<T> make_unique(U &&... u) {
+  return std::unique_ptr<T>(new T(std::forward<U>(u)...));
+}
+
+// TODO(Campbell): Update values
+// Translates for the sensor values to convert raw index pulses into something
+// with proper units.
+
+double drivetrain_translate(int32_t in) {
+  return -static_cast<double>(in) / (256.0 /*cpr*/ * 4.0 /*4x*/) *
+         ::y2016_bot3::constants::kDrivetrainEncoderRatio *
+         control_loops::drivetrain::kWheelRadius * 2.0 * M_PI;
+}
+
+double drivetrain_velocity_translate(double in) {
+  return (1.0 / in) / 256.0 /*cpr*/ *
+         ::y2016_bot3::constants::kDrivetrainEncoderRatio *
+         control_loops::drivetrain::kWheelRadius * 2.0 * M_PI;
+}
+
+double intake_translate(int32_t in) {
+  return static_cast<double>(in) / (512.0 /*cpr*/ * 4.0 /*4x*/) *
+         ::y2016_bot3::constants::kIntakeEncoderRatio * (2 * M_PI /*radians*/);
+}
+
+double intake_pot_translate(double voltage) {
+  return voltage * ::y2016_bot3::constants::kIntakePotRatio *
+         (10.0 /*turns*/ / 5.0 /*volts*/) * (2 * M_PI /*radians*/);
+}
+
+constexpr double kMaxDrivetrainEncoderPulsesPerSecond =
+    5600.0 /* CIM free speed RPM */ * 14.0 / 48.0 /* 1st reduction */ * 28.0 /
+    50.0 /* 2nd reduction (high gear) */ * 30.0 / 44.0 /* encoder gears */ /
+    60.0 /* seconds per minute */ * 256.0 /* CPR */ * 4 /* edges per cycle */;
+
+// Class to send position messages with sensor readings to our loops.
+class SensorReader {
+ public:
+  SensorReader() {
+    // Set it to filter out anything shorter than 1/4 of the minimum pulse width
+    // we should ever see.
+    drivetrain_encoder_filter_.SetPeriodNanoSeconds(
+        static_cast<int>(1 / 4.0 /* built-in tolerance */ /
+                             kMaxDrivetrainEncoderPulsesPerSecond * 1e9 +
+                         0.5));
+  }
+
+  // Drivetrain setters.
+  void set_drivetrain_left_encoder(::std::unique_ptr<Encoder> encoder) {
+    drivetrain_encoder_filter_.Add(encoder.get());
+    drivetrain_left_encoder_ = ::std::move(encoder);
+  }
+
+  void set_drivetrain_right_encoder(::std::unique_ptr<Encoder> encoder) {
+    drivetrain_encoder_filter_.Add(encoder.get());
+    drivetrain_right_encoder_ = ::std::move(encoder);
+  }
+
+  // Intake setters.
+  void set_intake_encoder(::std::unique_ptr<Encoder> encoder) {
+    intake_encoder_filter_.Add(encoder.get());
+    intake_encoder_.set_encoder(::std::move(encoder));
+  }
+
+  void set_intake_potentiometer(::std::unique_ptr<AnalogInput> potentiometer) {
+    intake_encoder_.set_potentiometer(::std::move(potentiometer));
+  }
+
+  void set_intake_index(::std::unique_ptr<DigitalInput> index) {
+    intake_encoder_filter_.Add(index.get());
+    intake_encoder_.set_index(::std::move(index));
+  }
+
+  // Ball detector setter.
+  void set_ball_detector(::std::unique_ptr<AnalogInput> analog) {
+    ball_detector_ = ::std::move(analog);
+  }
+
+  // All of the DMA-related set_* calls must be made before this, and it doesn't
+  // hurt to do all of them.
+
+  void set_dma(::std::unique_ptr<DMA> dma) {
+    dma_synchronizer_.reset(
+        new ::frc971::wpilib::DMASynchronizer(::std::move(dma)));
+    dma_synchronizer_->Add(&intake_encoder_);
+  }
+
+  void operator()() {
+    ::aos::SetCurrentThreadName("SensorReader");
+
+    my_pid_ = getpid();
+    ds_ = &DriverStation::GetInstance();
+
+    dma_synchronizer_->Start();
+
+    ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
+                                        ::aos::time::Time::InMS(4));
+
+    ::aos::SetCurrentThreadRealtimePriority(40);
+    while (run_) {
+      {
+        const int iterations = phased_loop.SleepUntilNext();
+        if (iterations != 1) {
+          LOG(WARNING, "SensorReader skipped %d iterations\n", iterations - 1);
+        }
+      }
+      RunIteration();
+    }
+  }
+
+  void RunIteration() {
+    ::frc971::wpilib::SendRobotState(my_pid_, ds_);
+
+    const auto intake_pot_offset =
+        y2016_bot3::constants::intake_zero.pot_offset;
+
+    {
+      auto drivetrain_message = drivetrain_queue.position.MakeMessage();
+      drivetrain_message->right_encoder =
+          drivetrain_translate(-drivetrain_right_encoder_->GetRaw());
+      drivetrain_message->left_encoder =
+          -drivetrain_translate(drivetrain_left_encoder_->GetRaw());
+      drivetrain_message->left_speed =
+          drivetrain_velocity_translate(drivetrain_left_encoder_->GetPeriod());
+      drivetrain_message->right_speed =
+          drivetrain_velocity_translate(drivetrain_right_encoder_->GetPeriod());
+
+      drivetrain_message.Send();
+    }
+
+    dma_synchronizer_->RunIteration();
+
+    {
+      auto intake_message = intake_queue.position.MakeMessage();
+      CopyPotAndIndexPosition(intake_encoder_, &intake_message->intake,
+                              intake_translate, intake_pot_translate, false,
+                              intake_pot_offset);
+
+      intake_message.Send();
+    }
+
+    {
+      auto ball_detector_message =
+          ::y2016_bot3::sensors::ball_detector.MakeMessage();
+      ball_detector_message->voltage = ball_detector_->GetVoltage();
+      LOG_STRUCT(DEBUG, "ball detector", *ball_detector_message);
+      ball_detector_message.Send();
+    }
+
+    {
+      auto auto_mode_message = ::y2016_bot3::actors::auto_mode.MakeMessage();
+      auto_mode_message->mode = 0;
+      LOG_STRUCT(DEBUG, "auto mode", *auto_mode_message);
+      auto_mode_message.Send();
+    }
+  }
+
+  void Quit() { run_ = false; }
+
+ private:
+  void CopyPotAndIndexPosition(
+      const ::frc971::wpilib::DMAEncoderAndPotentiometer &encoder,
+      ::frc971::PotAndIndexPosition *position,
+      ::std::function<double(int32_t)> encoder_translate,
+      ::std::function<double(double)> potentiometer_translate, bool reverse,
+      double pot_offset) {
+    const double multiplier = reverse ? -1.0 : 1.0;
+    position->encoder =
+        multiplier * encoder_translate(encoder.polled_encoder_value());
+    position->pot = multiplier * potentiometer_translate(
+                                     encoder.polled_potentiometer_voltage()) +
+                    pot_offset;
+    position->latched_encoder =
+        multiplier * encoder_translate(encoder.last_encoder_value());
+    position->latched_pot =
+        multiplier *
+            potentiometer_translate(encoder.last_potentiometer_voltage()) +
+        pot_offset;
+    position->index_pulses = encoder.index_posedge_count();
+  }
+
+  int32_t my_pid_;
+  DriverStation *ds_;
+
+  ::std::unique_ptr<::frc971::wpilib::DMASynchronizer> dma_synchronizer_;
+
+  ::std::unique_ptr<Encoder> drivetrain_left_encoder_,
+      drivetrain_right_encoder_;
+
+  ::frc971::wpilib::DMAEncoderAndPotentiometer intake_encoder_;
+  ::std::unique_ptr<AnalogInput> ball_detector_;
+
+  ::std::atomic<bool> run_{true};
+  DigitalGlitchFilter drivetrain_encoder_filter_, intake_encoder_filter_;
+};
+
+class SolenoidWriter {
+ public:
+  SolenoidWriter(const ::std::unique_ptr<::frc971::wpilib::BufferedPcm> &pcm)
+      : pcm_(pcm),
+        drivetrain_(".frc971.control_loops.drivetrain_queue.output"),
+        intake_(".y2016_bot3.control_loops.intake_queue.output") {}
+
+  void set_compressor(::std::unique_ptr<Compressor> compressor) {
+    compressor_ = ::std::move(compressor);
+  }
+
+  void set_traverse(::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
+    traverse_ = ::std::move(s);
+  }
+
+  void set_traverse_latch(
+      ::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
+    traverse_latch_ = ::std::move(s);
+  }
+
+  void operator()() {
+    compressor_->Start();
+    ::aos::SetCurrentThreadName("Solenoids");
+    ::aos::SetCurrentThreadRealtimePriority(27);
+
+    ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(20),
+                                        ::aos::time::Time::InMS(1));
+
+    while (run_) {
+      {
+        const int iterations = phased_loop.SleepUntilNext();
+        if (iterations != 1) {
+          LOG(DEBUG, "Solenoids skipped %d iterations\n", iterations - 1);
+        }
+      }
+
+      {
+        intake_.FetchLatest();
+        if (intake_.get()) {
+          LOG_STRUCT(DEBUG, "solenoids", *intake_);
+
+          traverse_->Set(intake_->traverse_down);
+          traverse_latch_->Set(intake_->traverse_unlatched);
+        }
+      }
+
+      {
+        ::frc971::wpilib::PneumaticsToLog to_log;
+        { to_log.compressor_on = compressor_->Enabled(); }
+
+        pcm_->Flush();
+        to_log.read_solenoids = pcm_->GetAll();
+        LOG_STRUCT(DEBUG, "pneumatics info", to_log);
+      }
+    }
+  }
+
+  void Quit() { run_ = false; }
+
+ private:
+  const ::std::unique_ptr<::frc971::wpilib::BufferedPcm> &pcm_;
+
+  ::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> traverse_,
+      traverse_latch_;
+  ::std::unique_ptr<Compressor> compressor_;
+
+  ::aos::Queue<::frc971::control_loops::DrivetrainQueue::Output> drivetrain_;
+  ::aos::Queue<::y2016_bot3::control_loops::IntakeQueue::Output> intake_;
+
+  ::std::atomic<bool> run_{true};
+};
+
+class DrivetrainWriter : public ::frc971::wpilib::LoopOutputHandler {
+ public:
+  void set_drivetrain_left_talon(::std::unique_ptr<Talon> t) {
+    drivetrain_left_talon_ = ::std::move(t);
+  }
+
+  void set_drivetrain_right_talon(::std::unique_ptr<Talon> t) {
+    drivetrain_right_talon_ = ::std::move(t);
+  }
+
+ private:
+  virtual void Read() override {
+    ::frc971::control_loops::drivetrain_queue.output.FetchAnother();
+  }
+
+  virtual void Write() override {
+    auto &queue = ::frc971::control_loops::drivetrain_queue.output;
+    LOG_STRUCT(DEBUG, "will output", *queue);
+    drivetrain_left_talon_->Set(queue->left_voltage / 12.0);
+    drivetrain_right_talon_->Set(-queue->right_voltage / 12.0);
+  }
+
+  virtual void Stop() override {
+    LOG(WARNING, "drivetrain output too old\n");
+    drivetrain_left_talon_->Disable();
+    drivetrain_right_talon_->Disable();
+  }
+
+  ::std::unique_ptr<Talon> drivetrain_left_talon_, drivetrain_right_talon_;
+};
+
+class IntakeWriter : public ::frc971::wpilib::LoopOutputHandler {
+ public:
+  void set_intake_talon(::std::unique_ptr<Talon> t) {
+    intake_talon_ = ::std::move(t);
+  }
+
+  void set_top_rollers_talon(::std::unique_ptr<Talon> t) {
+    top_rollers_talon_ = ::std::move(t);
+  }
+
+  void set_bottom_rollers_talon(::std::unique_ptr<Talon> t) {
+    bottom_rollers_talon_ = ::std::move(t);
+  }
+
+ private:
+  virtual void Read() override {
+    ::y2016_bot3::control_loops::intake_queue.output.FetchAnother();
+  }
+
+  virtual void Write() override {
+    auto &queue = ::y2016_bot3::control_loops::intake_queue.output;
+    LOG_STRUCT(DEBUG, "will output", *queue);
+    intake_talon_->Set(::aos::Clip(queue->voltage_intake, -kMaxBringupPower,
+                                   kMaxBringupPower) /
+                       12.0);
+    top_rollers_talon_->Set(-queue->voltage_top_rollers / 12.0);
+    bottom_rollers_talon_->Set(-queue->voltage_bottom_rollers / 12.0);
+  }
+
+  virtual void Stop() override {
+    LOG(WARNING, "Intake output too old.\n");
+    intake_talon_->Disable();
+  }
+
+  ::std::unique_ptr<Talon> intake_talon_, top_rollers_talon_,
+      bottom_rollers_talon_;
+};
+
+class WPILibRobot : public ::frc971::wpilib::WPILibRobotBase {
+ public:
+  ::std::unique_ptr<Encoder> make_encoder(int index) {
+    return make_unique<Encoder>(10 + index * 2, 11 + index * 2, false,
+                                Encoder::k4X);
+  }
+
+  void Run() override {
+    ::aos::InitNRT();
+    ::aos::SetCurrentThreadName("StartCompetition");
+
+    ::frc971::wpilib::JoystickSender joystick_sender;
+    ::std::thread joystick_thread(::std::ref(joystick_sender));
+
+    ::frc971::wpilib::PDPFetcher pdp_fetcher;
+    ::std::thread pdp_fetcher_thread(::std::ref(pdp_fetcher));
+    SensorReader reader;
+
+    reader.set_drivetrain_left_encoder(make_encoder(5));
+    reader.set_drivetrain_right_encoder(make_encoder(6));
+
+    reader.set_intake_encoder(make_encoder(0));
+    reader.set_intake_index(make_unique<DigitalInput>(0));
+    reader.set_intake_potentiometer(make_unique<AnalogInput>(0));
+
+    reader.set_ball_detector(make_unique<AnalogInput>(7));
+
+    reader.set_dma(make_unique<DMA>());
+    ::std::thread reader_thread(::std::ref(reader));
+
+    ::frc971::wpilib::GyroSender gyro_sender;
+    ::std::thread gyro_thread(::std::ref(gyro_sender));
+
+    DrivetrainWriter drivetrain_writer;
+    drivetrain_writer.set_drivetrain_left_talon(
+        ::std::unique_ptr<Talon>(new Talon(5)));
+    drivetrain_writer.set_drivetrain_right_talon(
+        ::std::unique_ptr<Talon>(new Talon(4)));
+    ::std::thread drivetrain_writer_thread(::std::ref(drivetrain_writer));
+
+    IntakeWriter intake_writer;
+    intake_writer.set_intake_talon(::std::unique_ptr<Talon>(new Talon(3)));
+    intake_writer.set_top_rollers_talon(::std::unique_ptr<Talon>(new Talon(1)));
+    intake_writer.set_bottom_rollers_talon(
+        ::std::unique_ptr<Talon>(new Talon(0)));
+    ::std::thread intake_writer_thread(::std::ref(intake_writer));
+
+    ::std::unique_ptr<::frc971::wpilib::BufferedPcm> pcm(
+        new ::frc971::wpilib::BufferedPcm());
+    SolenoidWriter solenoid_writer(pcm);
+    solenoid_writer.set_traverse_latch(pcm->MakeSolenoid(2));
+    solenoid_writer.set_traverse(pcm->MakeSolenoid(3));
+
+    solenoid_writer.set_compressor(make_unique<Compressor>());
+
+    ::std::thread solenoid_thread(::std::ref(solenoid_writer));
+
+    // Wait forever. Not much else to do...
+    while (true) {
+      const int r = select(0, nullptr, nullptr, nullptr, nullptr);
+      if (r != 0) {
+        PLOG(WARNING, "infinite select failed");
+      } else {
+        PLOG(WARNING, "infinite select succeeded??\n");
+      }
+    }
+
+    LOG(ERROR, "Exiting WPILibRobot\n");
+
+    joystick_sender.Quit();
+    joystick_thread.join();
+    pdp_fetcher.Quit();
+    pdp_fetcher_thread.join();
+    reader.Quit();
+    reader_thread.join();
+    gyro_sender.Quit();
+    gyro_thread.join();
+
+    drivetrain_writer.Quit();
+    drivetrain_writer_thread.join();
+    intake_writer.Quit();
+    intake_writer_thread.join();
+    solenoid_writer.Quit();
+    solenoid_thread.join();
+
+    ::aos::Cleanup();
+  }
+};
+
+}  // namespace wpilib
+}  // namespace y2016_bot3
+
+AOS_ROBOT_CLASS(::y2016_bot3::wpilib::WPILibRobot);