Changes to camera extrinsic calibration to improve accuracy

Adds Outlier Rejection

Do proper rotation (Quaternion) averaging

When camera sees two targets at once, store that, and store
a single observation to match with other cameras.  This leads
to a lot more good connections

Removed dead code, and refactored a couple pieces, e.g., writing extrinsic file

Also refactored some of the utilities to use quaternion averaging from utils,
and move other utility functions to vision_utils_lib

Change-Id: I918ce9c937d80717daa6659abbb139006506d4cc
Signed-off-by: Jim Ostrowski <yimmy13@gmail.com>
diff --git a/frc971/vision/vision_util_lib_test.cc b/frc971/vision/vision_util_lib_test.cc
index ff9c0a3..bdf8258 100644
--- a/frc971/vision/vision_util_lib_test.cc
+++ b/frc971/vision/vision_util_lib_test.cc
@@ -1,7 +1,10 @@
 #include "frc971/vision/vision_util_lib.h"
 
+#include "absl/strings/str_format.h"
 #include "gtest/gtest.h"
 
+#include "aos/util/math.h"
+
 namespace frc971::vision {
 // For now, just testing extracting camera number from channel name
 TEST(VisionUtilsTest, CameraNumberFromChannel) {
@@ -12,4 +15,114 @@
   ASSERT_EQ(CameraNumberFromChannel("/orin1/camera1").value(), 1);
   ASSERT_EQ(CameraNumberFromChannel("/orin1"), std::nullopt);
 }
+
+namespace {
+constexpr double kToleranceRadians = 0.05;
+// Conversions between euler angles and quaternion result in slightly-off
+// doubles
+constexpr double kOrientationEqTolerance = 1e-10;
+}  // namespace
+
+// Angles normalized by aos::math::NormalizeAngle()
+#define EXPECT_NORMALIZED_ANGLES_NEAR(theta1, theta2, tolerance)           \
+  {                                                                        \
+    double delta = std::abs(aos::math::DiffAngle(theta1, theta2));         \
+    /* Have to check delta - 2pi for the case that one angle is very */    \
+    /* close to -pi, and the other is very close to +pi */                 \
+    EXPECT_TRUE(delta < tolerance || std::abs(aos::math::DiffAngle(        \
+                                         delta, 2.0 * M_PI)) < tolerance); \
+  }
+
+#define EXPECT_POSE_NEAR(pose1, pose2)                                     \
+  {                                                                        \
+    for (size_t i = 0; i < 3; i++) {                                       \
+      EXPECT_NEAR(pose1.p(i), pose2.p(i), kToleranceMeters);               \
+    }                                                                      \
+    auto rpy_1 = PoseUtils::QuaternionToEulerAngles(pose1.q);              \
+    auto rpy_2 = PoseUtils::QuaternionToEulerAngles(pose2.q);              \
+    for (size_t i = 0; i < 3; i++) {                                       \
+      SCOPED_TRACE(absl::StrFormat("rpy_1(%d) = %f, rpy_2(%d) = %f", i,    \
+                                   rpy_1(i), i, rpy_2(i)));                \
+      EXPECT_NORMALIZED_ANGLES_NEAR(rpy_1(i), rpy_2(i), kToleranceRadians) \
+    }                                                                      \
+  }
+
+#define EXPECT_POSE_EQ(pose1, pose2) \
+  EXPECT_EQ(pose1.p, pose2.p);       \
+  EXPECT_EQ(pose1.q, pose2.q);
+
+#define EXPECT_QUATERNION_NEAR(q1, q2)                                        \
+  EXPECT_NEAR(q1.x(), q2.x(), kOrientationEqTolerance) << q1 << " != " << q2; \
+  EXPECT_NEAR(q1.y(), q2.y(), kOrientationEqTolerance) << q1 << " != " << q2; \
+  EXPECT_NEAR(q1.z(), q2.z(), kOrientationEqTolerance) << q1 << " != " << q2; \
+  EXPECT_NEAR(q1.w(), q2.w(), kOrientationEqTolerance) << q1 << " != " << q2;
+
+// Expects same roll, pitch, and yaw values (not equivalent rotation)
+#define EXPECT_RPY_EQ(rpy_1, rpy_2)                                     \
+  {                                                                     \
+    for (size_t i = 0; i < 3; i++) {                                    \
+      SCOPED_TRACE(absl::StrFormat("rpy_1(%d) = %f, rpy_2(%d) = %f", i, \
+                                   rpy_1(i), i, rpy_2(i)));             \
+      EXPECT_NORMALIZED_ANGLES_NEAR(rpy_1(i), rpy_2(i),                 \
+                                    kOrientationEqTolerance)            \
+    }                                                                   \
+  }
+
+#define EXPECT_EULER_ANGLES_QUATERNION_BACK_AND_FORTH_EQ(roll, pitch, yaw) \
+  {                                                                        \
+    auto rpy = Eigen::Vector3d(roll, pitch, yaw);                          \
+    auto converted_rpy = PoseUtils::QuaternionToEulerAngles(               \
+        PoseUtils::EulerAnglesToQuaternion(rpy));                          \
+    EXPECT_RPY_EQ(converted_rpy, rpy);                                     \
+  }
+
+// Both confidence matrixes should have the same dimensions and be square
+#define EXPECT_CONFIDENCE_GT(confidence1, confidence2) \
+  {                                                    \
+    ASSERT_EQ(confidence1.rows(), confidence2.rows()); \
+    ASSERT_EQ(confidence1.rows(), confidence1.cols()); \
+    ASSERT_EQ(confidence2.rows(), confidence2.cols()); \
+    for (size_t i = 0; i < confidence1.rows(); i++) {  \
+      EXPECT_GT(confidence1(i, i), confidence2(i, i)); \
+    }                                                  \
+  }
+
+TEST(PoseUtilsTest, EulerAnglesAndQuaternionConversions) {
+  // Make sure that the conversions are consistent back and forth.
+  // These angles shouldn't get changed to a different, equivalent roll pitch
+  // yaw.
+  EXPECT_EULER_ANGLES_QUATERNION_BACK_AND_FORTH_EQ(0.0, 0.0, M_PI);
+  EXPECT_EULER_ANGLES_QUATERNION_BACK_AND_FORTH_EQ(0.0, 0.0, -M_PI);
+  EXPECT_EULER_ANGLES_QUATERNION_BACK_AND_FORTH_EQ(0.0, 0.0, M_PI_2);
+  EXPECT_EULER_ANGLES_QUATERNION_BACK_AND_FORTH_EQ(0.0, 0.0, -M_PI_2);
+  EXPECT_EULER_ANGLES_QUATERNION_BACK_AND_FORTH_EQ(0.0, 0.0, 0.0);
+  EXPECT_EULER_ANGLES_QUATERNION_BACK_AND_FORTH_EQ(0.0, M_PI_4, 0.0);
+  EXPECT_EULER_ANGLES_QUATERNION_BACK_AND_FORTH_EQ(0.0, -M_PI_4, 0.0);
+  EXPECT_EULER_ANGLES_QUATERNION_BACK_AND_FORTH_EQ(0.0, -M_PI_4, M_PI_4);
+  EXPECT_EULER_ANGLES_QUATERNION_BACK_AND_FORTH_EQ(M_PI_4, -M_PI_4, M_PI_4);
+  EXPECT_EULER_ANGLES_QUATERNION_BACK_AND_FORTH_EQ(-M_PI_2, -M_PI_4, M_PI_4);
+
+  // Now, do a sweep of roll, pitch, and yaws in the normalized
+  // range.
+  // - roll: (-pi/2, pi/2)
+  // - pitch: (-pi/2, pi/2)
+  // - yaw: [-pi, pi)
+  constexpr double kThetaMaxRoll = M_PI_2 - kToleranceRadians;
+  constexpr double kThetaMaxPitch = M_PI_2 - kToleranceRadians;
+  constexpr double kThetaMaxYaw = M_PI;
+  constexpr double kDeltaTheta = M_PI / 16;
+
+  for (double roll = -kThetaMaxRoll; roll < kThetaMaxRoll;
+       roll += kDeltaTheta) {
+    for (double pitch = -kThetaMaxPitch; pitch < kThetaMaxPitch;
+         pitch += kDeltaTheta) {
+      for (double yaw = -kThetaMaxYaw; yaw < kThetaMaxYaw; yaw += kDeltaTheta) {
+        SCOPED_TRACE(
+            absl::StrFormat("roll: %f, pitch: %f, yaw: %f", roll, pitch, yaw));
+        EXPECT_EULER_ANGLES_QUATERNION_BACK_AND_FORTH_EQ(roll, pitch, yaw);
+      }
+    }
+  }
+}
+
 }  // namespace frc971::vision