Reformat python and c++ files

Change-Id: I7d7d99a2094c2a9181ed882735b55159c14db3b0
diff --git a/frc971/control_loops/python/haptic_wheel.py b/frc971/control_loops/python/haptic_wheel.py
index 6c88e15..088b204 100755
--- a/frc971/control_loops/python/haptic_wheel.py
+++ b/frc971/control_loops/python/haptic_wheel.py
@@ -15,392 +15,443 @@
 
 gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
 gflags.DEFINE_string('data', None, 'If defined, plot the provided CAN data')
-gflags.DEFINE_bool('rerun_kf', False, 'If true, rerun the KF.  The torque in the data file will be interpreted as the commanded current.')
+gflags.DEFINE_bool(
+    'rerun_kf', False,
+    'If true, rerun the KF.  The torque in the data file will be interpreted as the commanded current.'
+)
+
 
 class SystemParams(object):
-  def __init__(self, J, G, kP, kD, kCompensationTimeconstant, q_pos, q_vel,
-               q_torque, current_limit):
-    self.J = J
-    self.G = G
-    self.q_pos = q_pos
-    self.q_vel = q_vel
-    self.q_torque = q_torque
-    self.kP = kP
-    self.kD = kD
-    self.kCompensationTimeconstant = kCompensationTimeconstant
-    self.r_pos = 0.001
-    self.current_limit = current_limit
 
-    #[15.0, 0.25],
-    #[10.0, 0.2],
-    #[5.0, 0.13],
-    #[3.0, 0.10],
-    #[2.0, 0.08],
-    #[1.0, 0.06],
-    #[0.5, 0.05],
-    #[0.25, 0.025],
+    def __init__(self, J, G, kP, kD, kCompensationTimeconstant, q_pos, q_vel,
+                 q_torque, current_limit):
+        self.J = J
+        self.G = G
+        self.q_pos = q_pos
+        self.q_vel = q_vel
+        self.q_torque = q_torque
+        self.kP = kP
+        self.kD = kD
+        self.kCompensationTimeconstant = kCompensationTimeconstant
+        self.r_pos = 0.001
+        self.current_limit = current_limit
 
-kWheel = SystemParams(J=0.0008,
-                      G=(1.25 + 0.02) / 0.35,
-                      q_pos=0.001,
-                      q_vel=0.20,
-                      q_torque=0.005,
-                      kP=7.0,
-                      kD=0.0,
-                      kCompensationTimeconstant=0.95,
-                      current_limit=4.5)
-kTrigger = SystemParams(J=0.00025,
-                        G=(0.925 * 2.0 + 0.02) / 0.35,
-                        q_pos=0.001,
-                        q_vel=0.1,
-                        q_torque=0.005,
-                        kP=120.0,
-                        kD=1.8,
-                        kCompensationTimeconstant=0.95,
-                        current_limit=3.0)
+        #[15.0, 0.25],
+        #[10.0, 0.2],
+        #[5.0, 0.13],
+        #[3.0, 0.10],
+        #[2.0, 0.08],
+        #[1.0, 0.06],
+        #[0.5, 0.05],
+        #[0.25, 0.025],
+
+
+kWheel = SystemParams(
+    J=0.0008,
+    G=(1.25 + 0.02) / 0.35,
+    q_pos=0.001,
+    q_vel=0.20,
+    q_torque=0.005,
+    kP=7.0,
+    kD=0.0,
+    kCompensationTimeconstant=0.95,
+    current_limit=4.5)
+kTrigger = SystemParams(
+    J=0.00025,
+    G=(0.925 * 2.0 + 0.02) / 0.35,
+    q_pos=0.001,
+    q_vel=0.1,
+    q_torque=0.005,
+    kP=120.0,
+    kD=1.8,
+    kCompensationTimeconstant=0.95,
+    current_limit=3.0)
+
 
 class HapticInput(control_loop.ControlLoop):
-  def __init__(self, params=None, name='HapticInput'):
-    # The defaults are for the steering wheel.
-    super(HapticInput, self).__init__(name)
-    motor = self.motor = control_loop.MN3510()
 
-    # Moment of inertia of the wheel in kg m^2
-    self.J = params.J
+    def __init__(self, params=None, name='HapticInput'):
+        # The defaults are for the steering wheel.
+        super(HapticInput, self).__init__(name)
+        motor = self.motor = control_loop.MN3510()
 
-    # Control loop time step
-    self.dt = 0.001
+        # Moment of inertia of the wheel in kg m^2
+        self.J = params.J
 
-    # Gear ratio from the motor to the input.
-    self.G = params.G
+        # Control loop time step
+        self.dt = 0.001
 
-    self.A_continuous = numpy.matrix(numpy.zeros((2, 2)))
-    self.A_continuous[1, 1] = 0
-    self.A_continuous[0, 1] = 1
+        # Gear ratio from the motor to the input.
+        self.G = params.G
 
-    self.B_continuous = numpy.matrix(numpy.zeros((2, 1)))
-    self.B_continuous[1, 0] = motor.Kt * self.G / self.J
+        self.A_continuous = numpy.matrix(numpy.zeros((2, 2)))
+        self.A_continuous[1, 1] = 0
+        self.A_continuous[0, 1] = 1
 
-    # State feedback matrices
-    # [position, angular velocity]
-    self.C = numpy.matrix([[1.0, 0.0]])
-    self.D = numpy.matrix([[0.0]])
+        self.B_continuous = numpy.matrix(numpy.zeros((2, 1)))
+        self.B_continuous[1, 0] = motor.Kt * self.G / self.J
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        # State feedback matrices
+        # [position, angular velocity]
+        self.C = numpy.matrix([[1.0, 0.0]])
+        self.D = numpy.matrix([[0.0]])
 
-    self.U_max = numpy.matrix([[2.5]])
-    self.U_min = numpy.matrix([[-2.5]])
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    self.L = numpy.matrix([[0.0], [0.0]])
-    self.K = numpy.matrix([[0.0, 0.0]])
+        self.U_max = numpy.matrix([[2.5]])
+        self.U_min = numpy.matrix([[-2.5]])
 
-    self.InitializeState()
+        self.L = numpy.matrix([[0.0], [0.0]])
+        self.K = numpy.matrix([[0.0, 0.0]])
+
+        self.InitializeState()
 
 
 class IntegralHapticInput(HapticInput):
-  def __init__(self, params=None, name="IntegralHapticInput"):
-    super(IntegralHapticInput, self).__init__(name=name, params=params)
 
-    self.A_continuous_unaugmented = self.A_continuous
-    self.B_continuous_unaugmented = self.B_continuous
+    def __init__(self, params=None, name="IntegralHapticInput"):
+        super(IntegralHapticInput, self).__init__(name=name, params=params)
 
-    self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
-    self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
-    self.A_continuous[1, 2] = (1 / self.J)
+        self.A_continuous_unaugmented = self.A_continuous
+        self.B_continuous_unaugmented = self.B_continuous
 
-    self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
-    self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
+        self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
+        self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
+        self.A_continuous[1, 2] = (1 / self.J)
 
-    self.C_unaugmented = self.C
-    self.C = numpy.matrix(numpy.zeros((1, 3)))
-    self.C[0:1, 0:2] = self.C_unaugmented
+        self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
+        self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
 
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
+        self.C_unaugmented = self.C
+        self.C = numpy.matrix(numpy.zeros((1, 3)))
+        self.C[0:1, 0:2] = self.C_unaugmented
 
-    self.Q = numpy.matrix([[(params.q_pos ** 2.0), 0.0, 0.0],
-                           [0.0, (params.q_vel ** 2.0), 0.0],
-                           [0.0, 0.0, (params.q_torque ** 2.0)]])
+        self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                                   self.B_continuous, self.dt)
 
-    self.R = numpy.matrix([[(params.r_pos ** 2.0)]])
+        self.Q = numpy.matrix([[(params.q_pos**2.0), 0.0, 0.0],
+                               [0.0, (params.q_vel**2.0), 0.0],
+                               [0.0, 0.0, (params.q_torque**2.0)]])
 
-    self.KalmanGain, self.Q_steady = controls.kalman(
-        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
-    self.L = self.A * self.KalmanGain
+        self.R = numpy.matrix([[(params.r_pos**2.0)]])
 
-    self.K_unaugmented = self.K
-    self.K = numpy.matrix(numpy.zeros((1, 3)))
-    self.K[0, 0:2] = self.K_unaugmented
-    self.K[0, 2] = 1.0 / (self.motor.Kt / (self.motor.resistance))
+        self.KalmanGain, self.Q_steady = controls.kalman(
+            A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+        self.L = self.A * self.KalmanGain
 
-    self.InitializeState()
+        self.K_unaugmented = self.K
+        self.K = numpy.matrix(numpy.zeros((1, 3)))
+        self.K[0, 0:2] = self.K_unaugmented
+        self.K[0, 2] = 1.0 / (self.motor.Kt / (self.motor.resistance))
+
+        self.InitializeState()
+
 
 def ReadCan(filename):
-  """Reads the candump in filename and returns the 4 fields."""
-  trigger = []
-  trigger_velocity = []
-  trigger_torque = []
-  trigger_current = []
-  wheel = []
-  wheel_velocity = []
-  wheel_torque = []
-  wheel_current = []
+    """Reads the candump in filename and returns the 4 fields."""
+    trigger = []
+    trigger_velocity = []
+    trigger_torque = []
+    trigger_current = []
+    wheel = []
+    wheel_velocity = []
+    wheel_torque = []
+    wheel_current = []
 
-  trigger_request_time = [0.0]
-  trigger_request_current = [0.0]
-  wheel_request_time = [0.0]
-  wheel_request_current = [0.0]
+    trigger_request_time = [0.0]
+    trigger_request_current = [0.0]
+    wheel_request_time = [0.0]
+    wheel_request_current = [0.0]
 
-  with open(filename, 'r') as fd:
-    for line in fd:
-      data = line.split()
-      can_id = int(data[1], 16)
-      if can_id == 0:
-        data = [int(d, 16) for d in data[3:]]
-        trigger.append(((data[0] + (data[1] << 8)) - 32768) / 32768.0)
-        trigger_velocity.append(((data[2] + (data[3] << 8)) - 32768) / 32768.0)
-        trigger_torque.append(((data[4] + (data[5] << 8)) - 32768) / 32768.0)
-        trigger_current.append(((data[6] + ((data[7] & 0x3f) << 8)) - 8192) / 8192.0)
-      elif can_id == 1:
-        data = [int(d, 16) for d in data[3:]]
-        wheel.append(((data[0] + (data[1] << 8)) - 32768) / 32768.0)
-        wheel_velocity.append(((data[2] + (data[3] << 8)) - 32768) / 32768.0)
-        wheel_torque.append(((data[4] + (data[5] << 8)) - 32768) / 32768.0)
-        wheel_current.append(((data[6] + ((data[7] & 0x3f) << 8)) - 8192) / 8192.0)
-      elif can_id == 2:
-        data = [int(d, 16) for d in data[3:]]
-        trigger_request_current.append(((data[4] + (data[5] << 8)) - 32768) / 32768.0)
-        trigger_request_time.append(len(trigger) * 0.001)
-      elif can_id == 3:
-        data = [int(d, 16) for d in data[3:]]
-        wheel_request_current.append(((data[4] + (data[5] << 8)) - 32768) / 32768.0)
-        wheel_request_time.append(len(wheel) * 0.001)
+    with open(filename, 'r') as fd:
+        for line in fd:
+            data = line.split()
+            can_id = int(data[1], 16)
+            if can_id == 0:
+                data = [int(d, 16) for d in data[3:]]
+                trigger.append(((data[0] + (data[1] << 8)) - 32768) / 32768.0)
+                trigger_velocity.append(
+                    ((data[2] + (data[3] << 8)) - 32768) / 32768.0)
+                trigger_torque.append(
+                    ((data[4] + (data[5] << 8)) - 32768) / 32768.0)
+                trigger_current.append(
+                    ((data[6] + ((data[7] & 0x3f) << 8)) - 8192) / 8192.0)
+            elif can_id == 1:
+                data = [int(d, 16) for d in data[3:]]
+                wheel.append(((data[0] + (data[1] << 8)) - 32768) / 32768.0)
+                wheel_velocity.append(
+                    ((data[2] + (data[3] << 8)) - 32768) / 32768.0)
+                wheel_torque.append(
+                    ((data[4] + (data[5] << 8)) - 32768) / 32768.0)
+                wheel_current.append(
+                    ((data[6] + ((data[7] & 0x3f) << 8)) - 8192) / 8192.0)
+            elif can_id == 2:
+                data = [int(d, 16) for d in data[3:]]
+                trigger_request_current.append(
+                    ((data[4] + (data[5] << 8)) - 32768) / 32768.0)
+                trigger_request_time.append(len(trigger) * 0.001)
+            elif can_id == 3:
+                data = [int(d, 16) for d in data[3:]]
+                wheel_request_current.append(
+                    ((data[4] + (data[5] << 8)) - 32768) / 32768.0)
+                wheel_request_time.append(len(wheel) * 0.001)
 
-  trigger_data_time = numpy.arange(0, len(trigger)) * 0.001
-  wheel_data_time = numpy.arange(0, len(wheel)) * 0.001
+    trigger_data_time = numpy.arange(0, len(trigger)) * 0.001
+    wheel_data_time = numpy.arange(0, len(wheel)) * 0.001
 
-  # Extend out the data in the interpolation table.
-  trigger_request_time.append(trigger_data_time[-1])
-  trigger_request_current.append(trigger_request_current[-1])
-  wheel_request_time.append(wheel_data_time[-1])
-  wheel_request_current.append(wheel_request_current[-1])
+    # Extend out the data in the interpolation table.
+    trigger_request_time.append(trigger_data_time[-1])
+    trigger_request_current.append(trigger_request_current[-1])
+    wheel_request_time.append(wheel_data_time[-1])
+    wheel_request_current.append(wheel_request_current[-1])
 
-  return (trigger_data_time, wheel_data_time, trigger, wheel, trigger_velocity,
-          wheel_velocity, trigger_torque, wheel_torque, trigger_current,
-          wheel_current, trigger_request_time, trigger_request_current,
-          wheel_request_time, wheel_request_current)
+    return (trigger_data_time, wheel_data_time, trigger, wheel,
+            trigger_velocity, wheel_velocity, trigger_torque, wheel_torque,
+            trigger_current, wheel_current, trigger_request_time,
+            trigger_request_current, wheel_request_time, wheel_request_current)
 
-def rerun_and_plot_kf(data_time, data_radians, data_current, data_request_current,
-                      params, run_correct=True):
-  kf_velocity = []
-  dt_velocity = []
-  kf_position = []
-  adjusted_position = []
-  last_angle = None
-  haptic_observer = IntegralHapticInput(params=params)
 
-  # Parameter sweep J.
-  num_kf = 1
-  min_J = max_J = params.J
+def rerun_and_plot_kf(data_time,
+                      data_radians,
+                      data_current,
+                      data_request_current,
+                      params,
+                      run_correct=True):
+    kf_velocity = []
+    dt_velocity = []
+    kf_position = []
+    adjusted_position = []
+    last_angle = None
+    haptic_observer = IntegralHapticInput(params=params)
 
-  # J = 0.0022
-  #num_kf = 15
-  #min_J = min_J / 2.0
-  #max_J = max_J * 2.0
-  initial_velocity = (data_radians[1] - data_radians[0]) * 1000.0
+    # Parameter sweep J.
+    num_kf = 1
+    min_J = max_J = params.J
 
-  def DupParamsWithJ(params, J):
-    p = copy.copy(params)
-    p.J = J
-    return p
-  haptic_observers = [IntegralHapticInput(params=DupParamsWithJ(params, j)) for j in
-                      numpy.logspace(numpy.log10(min_J),
-                                     numpy.log10(max_J), num=num_kf)]
-  # Initialize all the KF's.
-  haptic_observer.X_hat[1, 0] = initial_velocity
-  haptic_observer.X_hat[0, 0] = data_radians[0]
-  for observer in haptic_observers:
-    observer.X_hat[1, 0] = initial_velocity
-    observer.X_hat[0, 0] = data_radians[0]
+    # J = 0.0022
+    #num_kf = 15
+    #min_J = min_J / 2.0
+    #max_J = max_J * 2.0
+    initial_velocity = (data_radians[1] - data_radians[0]) * 1000.0
 
-  last_request_current = data_request_current[0]
-  kf_torques = [[] for i in xrange(num_kf)]
-  for angle, current, request_current in zip(data_radians, data_current,
-                                             data_request_current):
-    # Predict and correct all the parameter swept observers.
-    for i, observer in enumerate(haptic_observers):
-      observer.Y = numpy.matrix([[angle]])
-      if run_correct:
-        observer.CorrectObserver(numpy.matrix([[current]]))
-      kf_torques[i].append(-observer.X_hat[2, 0])
-      observer.PredictObserver(numpy.matrix([[current]]))
-      observer.PredictObserver(numpy.matrix([[current]]))
+    def DupParamsWithJ(params, J):
+        p = copy.copy(params)
+        p.J = J
+        return p
 
-    # Predict and correct the main observer.
-    haptic_observer.Y = numpy.matrix([[angle]])
-    if run_correct:
-      haptic_observer.CorrectObserver(numpy.matrix([[current]]))
-    kf_position.append(haptic_observer.X_hat[0, 0])
-    adjusted_position.append(kf_position[-1] - last_request_current / params.kP)
-    last_request_current = last_request_current * params.kCompensationTimeconstant + request_current * (1.0 - params.kCompensationTimeconstant)
-    kf_velocity.append(haptic_observer.X_hat[1, 0])
-    if last_angle is None:
-      last_angle = angle
-    dt_velocity.append((angle - last_angle) / 0.001)
+    haptic_observers = [
+        IntegralHapticInput(params=DupParamsWithJ(params, j))
+        for j in numpy.logspace(
+            numpy.log10(min_J), numpy.log10(max_J), num=num_kf)
+    ]
+    # Initialize all the KF's.
+    haptic_observer.X_hat[1, 0] = initial_velocity
+    haptic_observer.X_hat[0, 0] = data_radians[0]
+    for observer in haptic_observers:
+        observer.X_hat[1, 0] = initial_velocity
+        observer.X_hat[0, 0] = data_radians[0]
 
-    haptic_observer.PredictObserver(numpy.matrix([[current]]))
-    last_angle = angle
+    last_request_current = data_request_current[0]
+    kf_torques = [[] for i in xrange(num_kf)]
+    for angle, current, request_current in zip(data_radians, data_current,
+                                               data_request_current):
+        # Predict and correct all the parameter swept observers.
+        for i, observer in enumerate(haptic_observers):
+            observer.Y = numpy.matrix([[angle]])
+            if run_correct:
+                observer.CorrectObserver(numpy.matrix([[current]]))
+            kf_torques[i].append(-observer.X_hat[2, 0])
+            observer.PredictObserver(numpy.matrix([[current]]))
+            observer.PredictObserver(numpy.matrix([[current]]))
 
-  # Plot the wheel observers.
-  fig, ax1 = pylab.subplots()
-  ax1.plot(data_time, data_radians, '.', label='wheel')
-  ax1.plot(data_time, dt_velocity, '.', label='dt_velocity')
-  ax1.plot(data_time, kf_velocity, '.', label='kf_velocity')
-  ax1.plot(data_time, kf_position, '.', label='kf_position')
-  ax1.plot(data_time, adjusted_position, '.', label='adjusted_position')
+        # Predict and correct the main observer.
+        haptic_observer.Y = numpy.matrix([[angle]])
+        if run_correct:
+            haptic_observer.CorrectObserver(numpy.matrix([[current]]))
+        kf_position.append(haptic_observer.X_hat[0, 0])
+        adjusted_position.append(kf_position[-1] -
+                                 last_request_current / params.kP)
+        last_request_current = last_request_current * params.kCompensationTimeconstant + request_current * (
+            1.0 - params.kCompensationTimeconstant)
+        kf_velocity.append(haptic_observer.X_hat[1, 0])
+        if last_angle is None:
+            last_angle = angle
+        dt_velocity.append((angle - last_angle) / 0.001)
 
-  ax2 = ax1.twinx()
-  ax2.plot(data_time, data_current, label='data_current')
-  ax2.plot(data_time, data_request_current, label='request_current')
+        haptic_observer.PredictObserver(numpy.matrix([[current]]))
+        last_angle = angle
 
-  for i, kf_torque in enumerate(kf_torques):
-    ax2.plot(data_time, kf_torque,
-               label='-kf_torque[%f]' % haptic_observers[i].J)
-  fig.tight_layout()
-  ax1.legend(loc=3)
-  ax2.legend(loc=4)
+    # Plot the wheel observers.
+    fig, ax1 = pylab.subplots()
+    ax1.plot(data_time, data_radians, '.', label='wheel')
+    ax1.plot(data_time, dt_velocity, '.', label='dt_velocity')
+    ax1.plot(data_time, kf_velocity, '.', label='kf_velocity')
+    ax1.plot(data_time, kf_position, '.', label='kf_position')
+    ax1.plot(data_time, adjusted_position, '.', label='adjusted_position')
 
-def plot_input(data_time, data_radians, data_velocity, data_torque,
-               data_current, params, run_correct=True):
-  dt_velocity = []
-  last_angle = None
-  initial_velocity = (data_radians[1] - data_radians[0]) * 1000.0
+    ax2 = ax1.twinx()
+    ax2.plot(data_time, data_current, label='data_current')
+    ax2.plot(data_time, data_request_current, label='request_current')
 
-  for angle in data_radians:
-    if last_angle is None:
-      last_angle = angle
-    dt_velocity.append((angle - last_angle) / 0.001)
+    for i, kf_torque in enumerate(kf_torques):
+        ax2.plot(
+            data_time,
+            kf_torque,
+            label='-kf_torque[%f]' % haptic_observers[i].J)
+    fig.tight_layout()
+    ax1.legend(loc=3)
+    ax2.legend(loc=4)
 
-    last_angle = angle
 
-  # Plot the wheel observers.
-  fig, ax1 = pylab.subplots()
-  ax1.plot(data_time, data_radians, '.', label='angle')
-  ax1.plot(data_time, data_velocity, '-', label='velocity')
-  ax1.plot(data_time, dt_velocity, '.', label='dt_velocity')
+def plot_input(data_time,
+               data_radians,
+               data_velocity,
+               data_torque,
+               data_current,
+               params,
+               run_correct=True):
+    dt_velocity = []
+    last_angle = None
+    initial_velocity = (data_radians[1] - data_radians[0]) * 1000.0
 
-  ax2 = ax1.twinx()
-  ax2.plot(data_time, data_torque, label='data_torque')
-  ax2.plot(data_time, data_current, label='data_current')
-  fig.tight_layout()
-  ax1.legend(loc=3)
-  ax2.legend(loc=4)
+    for angle in data_radians:
+        if last_angle is None:
+            last_angle = angle
+        dt_velocity.append((angle - last_angle) / 0.001)
+
+        last_angle = angle
+
+    # Plot the wheel observers.
+    fig, ax1 = pylab.subplots()
+    ax1.plot(data_time, data_radians, '.', label='angle')
+    ax1.plot(data_time, data_velocity, '-', label='velocity')
+    ax1.plot(data_time, dt_velocity, '.', label='dt_velocity')
+
+    ax2 = ax1.twinx()
+    ax2.plot(data_time, data_torque, label='data_torque')
+    ax2.plot(data_time, data_current, label='data_current')
+    fig.tight_layout()
+    ax1.legend(loc=3)
+    ax2.legend(loc=4)
+
 
 def main(argv):
-  if FLAGS.plot:
-    if FLAGS.data is None:
-      haptic_wheel = HapticInput()
-      haptic_wheel_controller = IntegralHapticInput()
-      observer_haptic_wheel = IntegralHapticInput()
-      observer_haptic_wheel.X_hat[2, 0] = 0.01
+    if FLAGS.plot:
+        if FLAGS.data is None:
+            haptic_wheel = HapticInput()
+            haptic_wheel_controller = IntegralHapticInput()
+            observer_haptic_wheel = IntegralHapticInput()
+            observer_haptic_wheel.X_hat[2, 0] = 0.01
 
-      R = numpy.matrix([[0.0], [0.0], [0.0]])
+            R = numpy.matrix([[0.0], [0.0], [0.0]])
 
-      control_loop.TestSingleIntegralAxisSquareWave(
-          R, 1.0, haptic_wheel, haptic_wheel_controller, observer_haptic_wheel)
+            control_loop.TestSingleIntegralAxisSquareWave(
+                R, 1.0, haptic_wheel, haptic_wheel_controller,
+                observer_haptic_wheel)
+        else:
+            # Read the CAN trace in.
+            trigger_data_time, wheel_data_time, trigger, wheel, trigger_velocity, \
+                wheel_velocity, trigger_torque, wheel_torque, trigger_current, \
+                wheel_current, trigger_request_time, trigger_request_current, \
+                wheel_request_time, wheel_request_current = ReadCan(FLAGS.data)
+
+            wheel_radians = [w * numpy.pi * (338.16 / 360.0) for w in wheel]
+            wheel_velocity = [w * 50.0 for w in wheel_velocity]
+            wheel_torque = [w / 2.0 for w in wheel_torque]
+            wheel_current = [w * 10.0 for w in wheel_current]
+            wheel_request_current = [w * 2.0 for w in wheel_request_current]
+            resampled_wheel_request_current = scipy.interpolate.interp1d(
+                wheel_request_time, wheel_request_current,
+                kind="zero")(wheel_data_time)
+
+            trigger_radians = [t * numpy.pi * (45.0 / 360.0) for t in trigger]
+            trigger_velocity = [t * 50.0 for t in trigger_velocity]
+            trigger_torque = [t / 2.0 for t in trigger_torque]
+            trigger_current = [t * 10.0 for t in trigger_current]
+            trigger_request_current = [t * 2.0 for t in trigger_request_current]
+            resampled_trigger_request_current = scipy.interpolate.interp1d(
+                trigger_request_time, trigger_request_current,
+                kind="zero")(trigger_data_time)
+
+            if FLAGS.rerun_kf:
+                rerun_and_plot_kf(
+                    trigger_data_time,
+                    trigger_radians,
+                    trigger_current,
+                    resampled_trigger_request_current,
+                    kTrigger,
+                    run_correct=True)
+                rerun_and_plot_kf(
+                    wheel_data_time,
+                    wheel_radians,
+                    wheel_current,
+                    resampled_wheel_request_current,
+                    kWheel,
+                    run_correct=True)
+            else:
+                plot_input(trigger_data_time, trigger_radians, trigger_velocity,
+                           trigger_torque, trigger_current, kTrigger)
+                plot_input(wheel_data_time, wheel_radians, wheel_velocity,
+                           wheel_torque, wheel_current, kWheel)
+            pylab.show()
+
+        return
+
+    if len(argv) != 9:
+        glog.fatal('Expected .h file name and .cc file name')
     else:
-      # Read the CAN trace in.
-      trigger_data_time, wheel_data_time, trigger, wheel, trigger_velocity, \
-          wheel_velocity, trigger_torque, wheel_torque, trigger_current, \
-          wheel_current, trigger_request_time, trigger_request_current, \
-          wheel_request_time, wheel_request_current = ReadCan(FLAGS.data)
+        namespaces = ['frc971', 'control_loops', 'drivetrain']
+        for name, params, filenames in [('HapticWheel', kWheel, argv[1:5]),
+                                        ('HapticTrigger', kTrigger, argv[5:9])]:
+            haptic_input = HapticInput(params=params, name=name)
+            loop_writer = control_loop.ControlLoopWriter(
+                name, [haptic_input],
+                namespaces=namespaces,
+                scalar_type='float')
+            loop_writer.Write(filenames[0], filenames[1])
 
-      wheel_radians = [w * numpy.pi * (338.16 / 360.0) for w in wheel]
-      wheel_velocity = [w * 50.0 for w in wheel_velocity]
-      wheel_torque = [w / 2.0 for w in wheel_torque]
-      wheel_current = [w * 10.0 for w in wheel_current]
-      wheel_request_current = [w * 2.0 for w in wheel_request_current]
-      resampled_wheel_request_current = scipy.interpolate.interp1d(
-          wheel_request_time, wheel_request_current, kind="zero")(wheel_data_time)
+            integral_haptic_input = IntegralHapticInput(
+                params=params, name='Integral' + name)
+            integral_loop_writer = control_loop.ControlLoopWriter(
+                'Integral' + name, [integral_haptic_input],
+                namespaces=namespaces,
+                scalar_type='float')
 
-      trigger_radians = [t * numpy.pi * (45.0 / 360.0) for t in trigger]
-      trigger_velocity = [t * 50.0 for t in trigger_velocity]
-      trigger_torque = [t / 2.0 for t in trigger_torque]
-      trigger_current = [t * 10.0 for t in trigger_current]
-      trigger_request_current = [t * 2.0 for t in trigger_request_current]
-      resampled_trigger_request_current = scipy.interpolate.interp1d(
-          trigger_request_time, trigger_request_current, kind="zero")(trigger_data_time)
+            integral_loop_writer.AddConstant(
+                control_loop.Constant("k" + name + "Dt", "%f",
+                                      integral_haptic_input.dt))
+            integral_loop_writer.AddConstant(
+                control_loop.Constant("k" + name + "FreeCurrent", "%f",
+                                      integral_haptic_input.motor.free_current))
+            integral_loop_writer.AddConstant(
+                control_loop.Constant("k" + name + "StallTorque", "%f",
+                                      integral_haptic_input.motor.stall_torque))
+            integral_loop_writer.AddConstant(
+                control_loop.Constant("k" + name + "J", "%f",
+                                      integral_haptic_input.J))
+            integral_loop_writer.AddConstant(
+                control_loop.Constant("k" + name + "R", "%f",
+                                      integral_haptic_input.motor.resistance))
+            integral_loop_writer.AddConstant(
+                control_loop.Constant("k" + name + "T", "%f",
+                                      integral_haptic_input.motor.Kt))
+            integral_loop_writer.AddConstant(
+                control_loop.Constant("k" + name + "V", "%f",
+                                      integral_haptic_input.motor.Kv))
+            integral_loop_writer.AddConstant(
+                control_loop.Constant("k" + name + "P", "%f", params.kP))
+            integral_loop_writer.AddConstant(
+                control_loop.Constant("k" + name + "D", "%f", params.kD))
+            integral_loop_writer.AddConstant(
+                control_loop.Constant("k" + name + "G", "%f", params.G))
+            integral_loop_writer.AddConstant(
+                control_loop.Constant("k" + name + "CurrentLimit", "%f",
+                                      params.current_limit))
 
-      if FLAGS.rerun_kf:
-        rerun_and_plot_kf(trigger_data_time, trigger_radians, trigger_current,
-                          resampled_trigger_request_current, kTrigger, run_correct=True)
-        rerun_and_plot_kf(wheel_data_time, wheel_radians, wheel_current,
-                          resampled_wheel_request_current, kWheel, run_correct=True)
-      else:
-        plot_input(trigger_data_time, trigger_radians, trigger_velocity,
-                   trigger_torque, trigger_current, kTrigger)
-        plot_input(wheel_data_time, wheel_radians, wheel_velocity, wheel_torque,
-                   wheel_current, kWheel)
-      pylab.show()
-
-    return
-
-  if len(argv) != 9:
-    glog.fatal('Expected .h file name and .cc file name')
-  else:
-    namespaces = ['frc971', 'control_loops', 'drivetrain']
-    for name, params, filenames in [('HapticWheel', kWheel, argv[1:5]),
-                                    ('HapticTrigger', kTrigger, argv[5:9])]:
-      haptic_input = HapticInput(params=params, name=name)
-      loop_writer = control_loop.ControlLoopWriter(name, [haptic_input],
-                                                   namespaces=namespaces,
-                                                   scalar_type='float')
-      loop_writer.Write(filenames[0], filenames[1])
-
-      integral_haptic_input = IntegralHapticInput(params=params,
-                                                  name='Integral' + name)
-      integral_loop_writer = control_loop.ControlLoopWriter(
-          'Integral' + name, [integral_haptic_input], namespaces=namespaces,
-          scalar_type='float')
-
-      integral_loop_writer.AddConstant(
-          control_loop.Constant("k" + name + "Dt", "%f",
-                                integral_haptic_input.dt))
-      integral_loop_writer.AddConstant(
-          control_loop.Constant("k" + name + "FreeCurrent", "%f",
-                                integral_haptic_input.motor.free_current))
-      integral_loop_writer.AddConstant(
-          control_loop.Constant("k" + name + "StallTorque", "%f",
-                                integral_haptic_input.motor.stall_torque))
-      integral_loop_writer.AddConstant(
-          control_loop.Constant("k" + name + "J", "%f",
-                                integral_haptic_input.J))
-      integral_loop_writer.AddConstant(
-          control_loop.Constant("k" + name + "R", "%f",
-                                integral_haptic_input.motor.resistance))
-      integral_loop_writer.AddConstant(
-          control_loop.Constant("k" + name + "T", "%f",
-                                integral_haptic_input.motor.Kt))
-      integral_loop_writer.AddConstant(
-          control_loop.Constant("k" + name + "V", "%f",
-                                integral_haptic_input.motor.Kv))
-      integral_loop_writer.AddConstant(
-          control_loop.Constant("k" + name + "P", "%f",
-                                params.kP))
-      integral_loop_writer.AddConstant(
-          control_loop.Constant("k" + name + "D", "%f",
-                                params.kD))
-      integral_loop_writer.AddConstant(
-          control_loop.Constant("k" + name + "G", "%f",
-                                params.G))
-      integral_loop_writer.AddConstant(
-          control_loop.Constant("k" + name + "CurrentLimit", "%f",
-                                params.current_limit))
-
-      integral_loop_writer.Write(filenames[2], filenames[3])
+            integral_loop_writer.Write(filenames[2], filenames[3])
 
 
 if __name__ == '__main__':
-  argv = FLAGS(sys.argv)
-  sys.exit(main(argv))
+    argv = FLAGS(sys.argv)
+    sys.exit(main(argv))