Create skeleton y2017_bot3 code
Added autonomous skeleton
Change-Id: I8bc5e18f5bab66bad29e9da3ce5b40ddd227b2c4
diff --git a/y2017_bot3/BUILD b/y2017_bot3/BUILD
new file mode 100644
index 0000000..c1dab0f
--- /dev/null
+++ b/y2017_bot3/BUILD
@@ -0,0 +1,64 @@
+load('/aos/downloader/downloader', 'aos_downloader')
+
+cc_binary(
+ name = 'wpilib_interface',
+ srcs = [
+ 'wpilib_interface.cc',
+ ],
+ deps = [
+ '//aos/common/controls:control_loop',
+ '//aos/common/logging',
+ '//aos/common/logging:queue_logging',
+ '//aos/common/messages:robot_state',
+ '//aos/common/util:log_interval',
+ '//aos/common/util:phased_loop',
+ '//aos/common:math',
+ '//aos/common:stl_mutex',
+ '//aos/common:time',
+ '//aos/linux_code:init',
+ '//frc971/control_loops/drivetrain:drivetrain_queue',
+ '//frc971/control_loops:queues',
+ '//frc971/wpilib:ADIS16448',
+ '//frc971/wpilib:buffered_pcm',
+ '//frc971/wpilib:dma',
+ '//frc971/wpilib:dma_edge_counting',
+ '//frc971/wpilib:encoder_and_potentiometer',
+ '//frc971/wpilib:gyro_sender',
+ '//frc971/wpilib:interrupt_edge_counting',
+ '//frc971/wpilib:joystick_sender',
+ '//frc971/wpilib:logging_queue',
+ '//frc971/wpilib:loop_output_handler',
+ '//frc971/wpilib:pdp_fetcher',
+ '//frc971/wpilib:wpilib_interface',
+ '//frc971/wpilib:wpilib_robot_base',
+ '//third_party:wpilib',
+ '//y2017_bot3/control_loops/drivetrain:polydrivetrain_plants',
+ ],
+ restricted_to = ['//tools:roborio'],
+)
+
+aos_downloader(
+ name = 'download',
+ start_srcs = [
+ '//aos:prime_start_binaries',
+ '//y2017_bot3/control_loops/drivetrain:drivetrain',
+ ':wpilib_interface',
+ ],
+ srcs = [
+ '//aos:prime_binaries',
+ ],
+ restricted_to = ['//tools:roborio'],
+)
+
+aos_downloader(
+ name = 'download_stripped',
+ start_srcs = [
+ '//aos:prime_start_binaries_stripped',
+ '//y2017_bot3/control_loops/drivetrain:drivetrain.stripped',
+ ':wpilib_interface.stripped',
+ ],
+ srcs = [
+ '//aos:prime_binaries_stripped',
+ ],
+ restricted_to = ['//tools:roborio'],
+)
diff --git a/y2017_bot3/control_loops/drivetrain/BUILD b/y2017_bot3/control_loops/drivetrain/BUILD
new file mode 100644
index 0000000..9f37ffc
--- /dev/null
+++ b/y2017_bot3/control_loops/drivetrain/BUILD
@@ -0,0 +1,77 @@
+package(default_visibility = ['//visibility:public'])
+
+load('/aos/build/queues', 'queue_library')
+
+genrule(
+ name = 'genrule_drivetrain',
+ visibility = ['//visibility:private'],
+ cmd = '$(location //y2017_bot3/control_loops/python:drivetrain) $(OUTS)',
+ tools = [
+ '//y2017_bot3/control_loops/python:drivetrain',
+ ],
+ outs = [
+ 'drivetrain_dog_motor_plant.h',
+ 'drivetrain_dog_motor_plant.cc',
+ 'kalman_drivetrain_motor_plant.h',
+ 'kalman_drivetrain_motor_plant.cc',
+ ],
+)
+
+genrule(
+ name = 'genrule_polydrivetrain',
+ visibility = ['//visibility:private'],
+ cmd = '$(location //y2017_bot3/control_loops/python:polydrivetrain) $(OUTS)',
+ tools = [
+ '//y2017_bot3/control_loops/python:polydrivetrain',
+ ],
+ outs = [
+ 'polydrivetrain_dog_motor_plant.h',
+ 'polydrivetrain_dog_motor_plant.cc',
+ 'polydrivetrain_cim_plant.h',
+ 'polydrivetrain_cim_plant.cc',
+ ],
+)
+
+cc_library(
+ name = 'polydrivetrain_plants',
+ srcs = [
+ 'polydrivetrain_dog_motor_plant.cc',
+ 'drivetrain_dog_motor_plant.cc',
+ 'kalman_drivetrain_motor_plant.cc',
+ ],
+ hdrs = [
+ 'polydrivetrain_dog_motor_plant.h',
+ 'drivetrain_dog_motor_plant.h',
+ 'kalman_drivetrain_motor_plant.h',
+ ],
+ deps = [
+ '//frc971/control_loops:state_feedback_loop',
+ ],
+)
+
+cc_library(
+ name = 'drivetrain_base',
+ srcs = [
+ 'drivetrain_base.cc',
+ ],
+ hdrs = [
+ 'drivetrain_base.h',
+ ],
+ deps = [
+ ':polydrivetrain_plants',
+ '//frc971/control_loops/drivetrain:drivetrain_config',
+ '//frc971:shifter_hall_effect',
+ ],
+)
+
+cc_binary(
+ name = 'drivetrain',
+ srcs = [
+ 'drivetrain_main.cc',
+ ],
+ deps = [
+ ':drivetrain_base',
+ '//aos/linux_code:init',
+ '//frc971/control_loops/drivetrain:drivetrain_lib',
+ ],
+)
diff --git a/y2017_bot3/control_loops/drivetrain/drivetrain_base.cc b/y2017_bot3/control_loops/drivetrain/drivetrain_base.cc
new file mode 100644
index 0000000..9c3e66e
--- /dev/null
+++ b/y2017_bot3/control_loops/drivetrain/drivetrain_base.cc
@@ -0,0 +1,46 @@
+#include "y2017_bot3/control_loops/drivetrain/drivetrain_base.h"
+
+#include "frc971/control_loops/drivetrain/drivetrain_config.h"
+
+#include "frc971/control_loops/state_feedback_loop.h"
+#include "y2017_bot3/control_loops/drivetrain/drivetrain_dog_motor_plant.h"
+#include "y2017_bot3/control_loops/drivetrain/polydrivetrain_dog_motor_plant.h"
+#include "y2017_bot3/control_loops/drivetrain/kalman_drivetrain_motor_plant.h"
+
+using ::frc971::control_loops::drivetrain::DrivetrainConfig;
+
+namespace y2017_bot3 {
+namespace control_loops {
+namespace drivetrain {
+
+using ::frc971::constants::ShifterHallEffect;
+
+const ShifterHallEffect kThreeStateDriveShifter{0.0, 0.0, 0.25, 0.75};
+
+const DrivetrainConfig &GetDrivetrainConfig() {
+ static DrivetrainConfig kDrivetrainConfig{
+ ::frc971::control_loops::drivetrain::ShifterType::HALL_EFFECT_SHIFTER,
+ ::frc971::control_loops::drivetrain::LoopType::CLOSED_LOOP,
+ ::frc971::control_loops::drivetrain::GyroType::SPARTAN_GYRO,
+
+ ::y2017_bot3::control_loops::drivetrain::MakeDrivetrainLoop,
+ ::y2017_bot3::control_loops::drivetrain::MakeVelocityDrivetrainLoop,
+ ::y2017_bot3::control_loops::drivetrain::MakeKFDrivetrainLoop,
+
+ drivetrain::kDt, drivetrain::kRobotRadius, drivetrain::kWheelRadius,
+ drivetrain::kV,
+
+ drivetrain::kHighGearRatio, drivetrain::kHighGearRatio,
+ kThreeStateDriveShifter, kThreeStateDriveShifter,
+ // TODO(Neil): Find out whigh position is default in pneumatics for the
+ // gearing
+ true /* default_high_gear */, 0 /* down_offset */,
+ 0.4 /* wheel_non_linearity */, 1.0 /* quickturn_wheel_multiplier */
+ };
+
+ return kDrivetrainConfig;
+};
+
+} // namespace drivetrain
+} // namespace control_loops
+} // namespace y2017_bot3
diff --git a/y2017_bot3/control_loops/drivetrain/drivetrain_base.h b/y2017_bot3/control_loops/drivetrain/drivetrain_base.h
new file mode 100644
index 0000000..88f93c9
--- /dev/null
+++ b/y2017_bot3/control_loops/drivetrain/drivetrain_base.h
@@ -0,0 +1,17 @@
+#ifndef Y2017_BOT3_CONTROL_LOOPS_DRIVETRAIN_DRIVETRAIN_BASE_H_
+#define Y2017_BOT3_CONTROL_LOOPS_DRIVETRAIN_DRIVETRAIN_BASE_H_
+
+#include "frc971/control_loops/drivetrain/drivetrain_config.h"
+
+namespace y2017_bot3 {
+namespace control_loops {
+namespace drivetrain {
+
+const ::frc971::control_loops::drivetrain::DrivetrainConfig &
+GetDrivetrainConfig();
+
+} // namespace drivetrain
+} // namespace control_loops
+} // namespace y2017_bot3
+
+#endif // Y2017_BOT3_CONTROL_LOOPS_DRIVETRAIN_DRIVETRAIN_BASE_H_
diff --git a/y2017_bot3/control_loops/drivetrain/drivetrain_main.cc b/y2017_bot3/control_loops/drivetrain/drivetrain_main.cc
new file mode 100644
index 0000000..3c65c7b
--- /dev/null
+++ b/y2017_bot3/control_loops/drivetrain/drivetrain_main.cc
@@ -0,0 +1,15 @@
+#include "aos/linux_code/init.h"
+
+#include "frc971/control_loops/drivetrain/drivetrain.h"
+#include "y2017_bot3/control_loops/drivetrain/drivetrain_base.h"
+
+using ::frc971::control_loops::drivetrain::DrivetrainLoop;
+
+int main() {
+ ::aos::Init();
+ DrivetrainLoop drivetrain(
+ ::y2017_bot3::control_loops::drivetrain::GetDrivetrainConfig());
+ drivetrain.Run();
+ ::aos::Cleanup();
+ return 0;
+}
diff --git a/y2017_bot3/control_loops/python/BUILD b/y2017_bot3/control_loops/python/BUILD
new file mode 100644
index 0000000..ab4b383
--- /dev/null
+++ b/y2017_bot3/control_loops/python/BUILD
@@ -0,0 +1,42 @@
+package(default_visibility = ['//y2017_bot3:__subpackages__'])
+
+py_binary(
+ name = 'drivetrain',
+ srcs = [
+ 'drivetrain.py',
+ ],
+ deps = [
+ '//external:python-gflags',
+ '//external:python-glog',
+ '//frc971/control_loops/python:controls',
+ ],
+ restricted_to = ['//tools:k8'],
+)
+
+py_binary(
+ name = 'polydrivetrain',
+ srcs = [
+ 'polydrivetrain.py',
+ 'drivetrain.py',
+ ],
+ deps = [
+ '//external:python-gflags',
+ '//external:python-glog',
+ '//frc971/control_loops/python:controls',
+ ],
+ restricted_to = ['//tools:k8'],
+)
+
+py_library(
+ name = 'polydrivetrain_lib',
+ srcs = [
+ 'polydrivetrain.py',
+ 'drivetrain.py',
+ ],
+ deps = [
+ '//external:python-gflags',
+ '//external:python-glog',
+ '//frc971/control_loops/python:controls',
+ ],
+ restricted_to = ['//tools:k8'],
+)
diff --git a/y2017_bot3/control_loops/python/drivetrain.py b/y2017_bot3/control_loops/python/drivetrain.py
new file mode 100755
index 0000000..846fc39
--- /dev/null
+++ b/y2017_bot3/control_loops/python/drivetrain.py
@@ -0,0 +1,360 @@
+#!/usr/bin/python
+
+from frc971.control_loops.python import control_loop
+from frc971.control_loops.python import controls
+import numpy
+import sys
+from matplotlib import pylab
+
+import gflags
+import glog
+
+FLAGS = gflags.FLAGS
+
+gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+
+
+class Drivetrain(control_loop.ControlLoop):
+ def __init__(self, name="Drivetrain", left_low=True, right_low=True):
+ super(Drivetrain, self).__init__(name)
+ # Number of motors per side
+ self.num_motors = 2
+ # Stall Torque in N m
+ self.stall_torque = 2.42 * self.num_motors * 0.60
+ # Stall Current in Amps
+ self.stall_current = 133.0 * self.num_motors
+ self.free_speed_rpm = 5500.0
+ # Free Speed in rotations/second.
+ self.free_speed = self.free_speed_rpm / 60
+ # Free Current in Amps
+ self.free_current = 2.7 * self.num_motors
+ #TODO(Neil): Update robot moment of inertia, mass, and robot radius
+ # Moment of inertia of the drivetrain in kg m^2
+ self.J = 6.0
+ # Mass of the robot, in kg.
+ self.m = 52
+ # Radius of the robot, in meters (requires tuning by hand)
+ self.rb = 0.59055 / 2.0
+ # Radius of the wheels, in meters.
+ self.r = 4 * 0.0254 / 2
+ # Resistance of the motor, divided by the number of motors.
+ self.resistance = 12.0 / self.stall_current
+ # Motor velocity constant
+ self.Kv = ((self.free_speed * 2.0 * numpy.pi) /
+ (12.0 - self.resistance * self.free_current))
+ # Torque constant
+ self.Kt = self.stall_torque / self.stall_current
+ # Gear ratios
+ self.G_low = 14.0 / 40.0 * 24.0 / 60.0 * 52.0 / 60.0
+ self.G_high = 14.0 / 40.0 * 34.0 / 50.0 * 52.0 / 60.0
+ if left_low:
+ self.Gl = self.G_low
+ else:
+ self.Gl = self.G_high
+ if right_low:
+ self.Gr = self.G_low
+ else:
+ self.Gr = self.G_high
+
+ # Control loop time step
+ self.dt = 0.00505
+
+ # These describe the way that a given side of a robot will be influenced
+ # by the other side. Units of 1 / kg.
+ self.msp = 1.0 / self.m + self.rb * self.rb / self.J
+ self.msn = 1.0 / self.m - self.rb * self.rb / self.J
+ # The calculations which we will need for A and B.
+ self.tcl = -self.Kt / self.Kv / (self.Gl * self.Gl * self.resistance * self.r * self.r)
+ self.tcr = -self.Kt / self.Kv / (self.Gr * self.Gr * self.resistance * self.r * self.r)
+ self.mpl = self.Kt / (self.Gl * self.resistance * self.r)
+ self.mpr = self.Kt / (self.Gr * self.resistance * self.r)
+
+ # State feedback matrices
+ # X will be of the format
+ # [[positionl], [velocityl], [positionr], velocityr]]
+ self.A_continuous = numpy.matrix(
+ [[0, 1, 0, 0],
+ [0, self.msp * self.tcl, 0, self.msn * self.tcr],
+ [0, 0, 0, 1],
+ [0, self.msn * self.tcl, 0, self.msp * self.tcr]])
+ self.B_continuous = numpy.matrix(
+ [[0, 0],
+ [self.msp * self.mpl, self.msn * self.mpr],
+ [0, 0],
+ [self.msn * self.mpl, self.msp * self.mpr]])
+ self.C = numpy.matrix([[1, 0, 0, 0],
+ [0, 0, 1, 0]])
+ self.D = numpy.matrix([[0, 0],
+ [0, 0]])
+
+ self.A, self.B = self.ContinuousToDiscrete(
+ self.A_continuous, self.B_continuous, self.dt)
+
+ if left_low or right_low:
+ q_pos = 0.12
+ q_vel = 1.0
+ else:
+ q_pos = 0.14
+ q_vel = 0.95
+
+ # Tune the LQR controller
+ self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0, 0.0, 0.0],
+ [0.0, (1.0 / (q_vel ** 2.0)), 0.0, 0.0],
+ [0.0, 0.0, (1.0 / (q_pos ** 2.0)), 0.0],
+ [0.0, 0.0, 0.0, (1.0 / (q_vel ** 2.0))]])
+
+ self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0)), 0.0],
+ [0.0, (1.0 / (12.0 ** 2.0))]])
+ self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
+
+ glog.debug('DT q_pos %f q_vel %s %s', q_pos, q_vel, name)
+ glog.debug(str(numpy.linalg.eig(self.A - self.B * self.K)[0]))
+ glog.debug('K %s', repr(self.K))
+
+ self.hlp = 0.3
+ self.llp = 0.4
+ self.PlaceObserverPoles([self.hlp, self.hlp, self.llp, self.llp])
+
+ self.U_max = numpy.matrix([[12.0], [12.0]])
+ self.U_min = numpy.matrix([[-12.0], [-12.0]])
+
+ self.InitializeState()
+
+
+class KFDrivetrain(Drivetrain):
+ def __init__(self, name="KFDrivetrain", left_low=True, right_low=True):
+ super(KFDrivetrain, self).__init__(name, left_low, right_low)
+
+ self.unaugmented_A_continuous = self.A_continuous
+ self.unaugmented_B_continuous = self.B_continuous
+
+ # The practical voltage applied to the wheels is
+ # V_left = U_left + left_voltage_error
+ #
+ # The states are
+ # [left position, left velocity, right position, right velocity,
+ # left voltage error, right voltage error, angular_error]
+ #
+ # The left and right positions are filtered encoder positions and are not
+ # adjusted for heading error.
+ # The turn velocity as computed by the left and right velocities is
+ # adjusted by the gyro velocity.
+ # The angular_error is the angular velocity error between the wheel speed
+ # and the gyro speed.
+ self.A_continuous = numpy.matrix(numpy.zeros((7, 7)))
+ self.B_continuous = numpy.matrix(numpy.zeros((7, 2)))
+ self.A_continuous[0:4,0:4] = self.unaugmented_A_continuous
+ self.A_continuous[0:4,4:6] = self.unaugmented_B_continuous
+ self.B_continuous[0:4,0:2] = self.unaugmented_B_continuous
+ self.A_continuous[0,6] = 1
+ self.A_continuous[2,6] = -1
+
+ self.A, self.B = self.ContinuousToDiscrete(
+ self.A_continuous, self.B_continuous, self.dt)
+
+ self.C = numpy.matrix([[1, 0, 0, 0, 0, 0, 0],
+ [0, 0, 1, 0, 0, 0, 0],
+ [0, -0.5 / self.rb, 0, 0.5 / self.rb, 0, 0, 0]])
+
+ self.D = numpy.matrix([[0, 0],
+ [0, 0],
+ [0, 0]])
+
+ q_pos = 0.05
+ q_vel = 1.00
+ q_voltage = 10.0
+ q_encoder_uncertainty = 2.00
+
+ self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
+ [0.0, (q_vel ** 2.0), 0.0, 0.0, 0.0, 0.0, 0.0],
+ [0.0, 0.0, (q_pos ** 2.0), 0.0, 0.0, 0.0, 0.0],
+ [0.0, 0.0, 0.0, (q_vel ** 2.0), 0.0, 0.0, 0.0],
+ [0.0, 0.0, 0.0, 0.0, (q_voltage ** 2.0), 0.0, 0.0],
+ [0.0, 0.0, 0.0, 0.0, 0.0, (q_voltage ** 2.0), 0.0],
+ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, (q_encoder_uncertainty ** 2.0)]])
+
+ r_pos = 0.0001
+ r_gyro = 0.000001
+ self.R = numpy.matrix([[(r_pos ** 2.0), 0.0, 0.0],
+ [0.0, (r_pos ** 2.0), 0.0],
+ [0.0, 0.0, (r_gyro ** 2.0)]])
+
+ # Solving for kf gains.
+ self.KalmanGain, self.Q_steady = controls.kalman(
+ A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+
+ self.L = self.A * self.KalmanGain
+
+ unaug_K = self.K
+
+ # Implement a nice closed loop controller for use by the closed loop
+ # controller.
+ self.K = numpy.matrix(numpy.zeros((self.B.shape[1], self.A.shape[0])))
+ self.K[0:2, 0:4] = unaug_K
+ self.K[0, 4] = 1.0
+ self.K[1, 5] = 1.0
+
+ self.Qff = numpy.matrix(numpy.zeros((4, 4)))
+ qff_pos = 0.005
+ qff_vel = 1.00
+ self.Qff[0, 0] = 1.0 / qff_pos ** 2.0
+ self.Qff[1, 1] = 1.0 / qff_vel ** 2.0
+ self.Qff[2, 2] = 1.0 / qff_pos ** 2.0
+ self.Qff[3, 3] = 1.0 / qff_vel ** 2.0
+ self.Kff = numpy.matrix(numpy.zeros((2, 7)))
+ self.Kff[0:2, 0:4] = controls.TwoStateFeedForwards(self.B[0:4,:], self.Qff)
+
+ self.InitializeState()
+
+
+def main(argv):
+ argv = FLAGS(argv)
+ glog.init()
+
+ # Simulate the response of the system to a step input.
+ drivetrain = Drivetrain(left_low=False, right_low=False)
+ simulated_left = []
+ simulated_right = []
+ for _ in xrange(100):
+ drivetrain.Update(numpy.matrix([[12.0], [12.0]]))
+ simulated_left.append(drivetrain.X[0, 0])
+ simulated_right.append(drivetrain.X[2, 0])
+
+ if FLAGS.plot:
+ pylab.plot(range(100), simulated_left)
+ pylab.plot(range(100), simulated_right)
+ pylab.suptitle('Acceleration Test')
+ pylab.show()
+
+ # Simulate forwards motion.
+ drivetrain = Drivetrain(left_low=False, right_low=False)
+ close_loop_left = []
+ close_loop_right = []
+ left_power = []
+ right_power = []
+ R = numpy.matrix([[1.0], [0.0], [1.0], [0.0]])
+ for _ in xrange(300):
+ U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
+ drivetrain.U_min, drivetrain.U_max)
+ drivetrain.UpdateObserver(U)
+ drivetrain.Update(U)
+ close_loop_left.append(drivetrain.X[0, 0])
+ close_loop_right.append(drivetrain.X[2, 0])
+ left_power.append(U[0, 0])
+ right_power.append(U[1, 0])
+
+ if FLAGS.plot:
+ pylab.plot(range(300), close_loop_left, label='left position')
+ pylab.plot(range(300), close_loop_right, label='right position')
+ pylab.plot(range(300), left_power, label='left power')
+ pylab.plot(range(300), right_power, label='right power')
+ pylab.suptitle('Linear Move')
+ pylab.legend()
+ pylab.show()
+
+ # Try turning in place
+ drivetrain = Drivetrain()
+ close_loop_left = []
+ close_loop_right = []
+ R = numpy.matrix([[-1.0], [0.0], [1.0], [0.0]])
+ for _ in xrange(100):
+ U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
+ drivetrain.U_min, drivetrain.U_max)
+ drivetrain.UpdateObserver(U)
+ drivetrain.Update(U)
+ close_loop_left.append(drivetrain.X[0, 0])
+ close_loop_right.append(drivetrain.X[2, 0])
+
+ if FLAGS.plot:
+ pylab.plot(range(100), close_loop_left)
+ pylab.plot(range(100), close_loop_right)
+ pylab.suptitle('Angular Move')
+ pylab.show()
+
+ # Try turning just one side.
+ drivetrain = Drivetrain()
+ close_loop_left = []
+ close_loop_right = []
+ R = numpy.matrix([[0.0], [0.0], [1.0], [0.0]])
+ for _ in xrange(100):
+ U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
+ drivetrain.U_min, drivetrain.U_max)
+ drivetrain.UpdateObserver(U)
+ drivetrain.Update(U)
+ close_loop_left.append(drivetrain.X[0, 0])
+ close_loop_right.append(drivetrain.X[2, 0])
+
+ if FLAGS.plot:
+ pylab.plot(range(100), close_loop_left)
+ pylab.plot(range(100), close_loop_right)
+ pylab.suptitle('Pivot')
+ pylab.show()
+
+ # Write the generated constants out to a file.
+ drivetrain_low_low = Drivetrain(
+ name="DrivetrainLowLow", left_low=True, right_low=True)
+ drivetrain_low_high = Drivetrain(
+ name="DrivetrainLowHigh", left_low=True, right_low=False)
+ drivetrain_high_low = Drivetrain(
+ name="DrivetrainHighLow", left_low=False, right_low=True)
+ drivetrain_high_high = Drivetrain(
+ name="DrivetrainHighHigh", left_low=False, right_low=False)
+
+ kf_drivetrain_low_low = KFDrivetrain(
+ name="KFDrivetrainLowLow", left_low=True, right_low=True)
+ kf_drivetrain_low_high = KFDrivetrain(
+ name="KFDrivetrainLowHigh", left_low=True, right_low=False)
+ kf_drivetrain_high_low = KFDrivetrain(
+ name="KFDrivetrainHighLow", left_low=False, right_low=True)
+ kf_drivetrain_high_high = KFDrivetrain(
+ name="KFDrivetrainHighHigh", left_low=False, right_low=False)
+
+ if len(argv) != 5:
+ print "Expected .h file name and .cc file name"
+ else:
+ namespaces = ['y2017_bot3', 'control_loops', 'drivetrain']
+ dog_loop_writer = control_loop.ControlLoopWriter(
+ "Drivetrain", [drivetrain_low_low, drivetrain_low_high,
+ drivetrain_high_low, drivetrain_high_high],
+ namespaces = namespaces)
+ dog_loop_writer.AddConstant(control_loop.Constant("kDt", "%f",
+ drivetrain_low_low.dt))
+ dog_loop_writer.AddConstant(control_loop.Constant("kStallTorque", "%f",
+ drivetrain_low_low.stall_torque))
+ dog_loop_writer.AddConstant(control_loop.Constant("kStallCurrent", "%f",
+ drivetrain_low_low.stall_current))
+ dog_loop_writer.AddConstant(control_loop.Constant("kFreeSpeed", "%f",
+ drivetrain_low_low.free_speed))
+ dog_loop_writer.AddConstant(control_loop.Constant("kFreeCurrent", "%f",
+ drivetrain_low_low.free_current))
+ dog_loop_writer.AddConstant(control_loop.Constant("kJ", "%f",
+ drivetrain_low_low.J))
+ dog_loop_writer.AddConstant(control_loop.Constant("kMass", "%f",
+ drivetrain_low_low.m))
+ dog_loop_writer.AddConstant(control_loop.Constant("kRobotRadius", "%f",
+ drivetrain_low_low.rb))
+ dog_loop_writer.AddConstant(control_loop.Constant("kWheelRadius", "%f",
+ drivetrain_low_low.r))
+ dog_loop_writer.AddConstant(control_loop.Constant("kR", "%f",
+ drivetrain_low_low.resistance))
+ dog_loop_writer.AddConstant(control_loop.Constant("kV", "%f",
+ drivetrain_low_low.Kv))
+ dog_loop_writer.AddConstant(control_loop.Constant("kT", "%f",
+ drivetrain_low_low.Kt))
+ dog_loop_writer.AddConstant(control_loop.Constant("kLowGearRatio", "%f",
+ drivetrain_low_low.G_low))
+ dog_loop_writer.AddConstant(control_loop.Constant("kHighGearRatio", "%f",
+ drivetrain_high_high.G_high))
+ dog_loop_writer.AddConstant(control_loop.Constant("kHighOutputRatio", "%f",
+ drivetrain_high_high.G_high * drivetrain_high_high.r))
+
+ dog_loop_writer.Write(argv[1], argv[2])
+
+ kf_loop_writer = control_loop.ControlLoopWriter(
+ "KFDrivetrain", [kf_drivetrain_low_low, kf_drivetrain_low_high,
+ kf_drivetrain_high_low, kf_drivetrain_high_high],
+ namespaces = namespaces)
+ kf_loop_writer.Write(argv[3], argv[4])
+
+if __name__ == '__main__':
+ sys.exit(main(sys.argv))
diff --git a/y2017_bot3/control_loops/python/polydrivetrain.py b/y2017_bot3/control_loops/python/polydrivetrain.py
new file mode 100755
index 0000000..59ba5cd
--- /dev/null
+++ b/y2017_bot3/control_loops/python/polydrivetrain.py
@@ -0,0 +1,501 @@
+#!/usr/bin/python
+
+import numpy
+import sys
+from frc971.control_loops.python import polytope
+from y2017_bot3.control_loops.python import drivetrain
+from frc971.control_loops.python import control_loop
+from frc971.control_loops.python import controls
+from frc971.control_loops.python.cim import CIM
+from matplotlib import pylab
+
+import gflags
+import glog
+
+__author__ = 'Austin Schuh (austin.linux@gmail.com)'
+
+FLAGS = gflags.FLAGS
+
+try:
+ gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+except gflags.DuplicateFlagError:
+ pass
+
+def CoerceGoal(region, K, w, R):
+ """Intersects a line with a region, and finds the closest point to R.
+
+ Finds a point that is closest to R inside the region, and on the line
+ defined by K X = w. If it is not possible to find a point on the line,
+ finds a point that is inside the region and closest to the line. This
+ function assumes that
+
+ Args:
+ region: HPolytope, the valid goal region.
+ K: numpy.matrix (2 x 1), the matrix for the equation [K1, K2] [x1; x2] = w
+ w: float, the offset in the equation above.
+ R: numpy.matrix (2 x 1), the point to be closest to.
+
+ Returns:
+ numpy.matrix (2 x 1), the point.
+ """
+ return DoCoerceGoal(region, K, w, R)[0]
+
+def DoCoerceGoal(region, K, w, R):
+ if region.IsInside(R):
+ return (R, True)
+
+ perpendicular_vector = K.T / numpy.linalg.norm(K)
+ parallel_vector = numpy.matrix([[perpendicular_vector[1, 0]],
+ [-perpendicular_vector[0, 0]]])
+
+ # We want to impose the constraint K * X = w on the polytope H * X <= k.
+ # We do this by breaking X up into parallel and perpendicular components to
+ # the half plane. This gives us the following equation.
+ #
+ # parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) = X
+ #
+ # Then, substitute this into the polytope.
+ #
+ # H * (parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) <= k
+ #
+ # Substitute K * X = w
+ #
+ # H * parallel * (parallel.T \dot X) + H * perpendicular * w <= k
+ #
+ # Move all the knowns to the right side.
+ #
+ # H * parallel * ([parallel1 parallel2] * X) <= k - H * perpendicular * w
+ #
+ # Let t = parallel.T \dot X, the component parallel to the surface.
+ #
+ # H * parallel * t <= k - H * perpendicular * w
+ #
+ # This is a polytope which we can solve, and use to figure out the range of X
+ # that we care about!
+
+ t_poly = polytope.HPolytope(
+ region.H * parallel_vector,
+ region.k - region.H * perpendicular_vector * w)
+
+ vertices = t_poly.Vertices()
+
+ if vertices.shape[0]:
+ # The region exists!
+ # Find the closest vertex
+ min_distance = numpy.infty
+ closest_point = None
+ for vertex in vertices:
+ point = parallel_vector * vertex + perpendicular_vector * w
+ length = numpy.linalg.norm(R - point)
+ if length < min_distance:
+ min_distance = length
+ closest_point = point
+
+ return (closest_point, True)
+ else:
+ # Find the vertex of the space that is closest to the line.
+ region_vertices = region.Vertices()
+ min_distance = numpy.infty
+ closest_point = None
+ for vertex in region_vertices:
+ point = vertex.T
+ length = numpy.abs((perpendicular_vector.T * point)[0, 0])
+ if length < min_distance:
+ min_distance = length
+ closest_point = point
+
+ return (closest_point, False)
+
+
+class VelocityDrivetrainModel(control_loop.ControlLoop):
+ def __init__(self, left_low=True, right_low=True, name="VelocityDrivetrainModel"):
+ super(VelocityDrivetrainModel, self).__init__(name)
+ self._drivetrain = drivetrain.Drivetrain(left_low=left_low,
+ right_low=right_low)
+ self.dt = 0.00505
+ self.A_continuous = numpy.matrix(
+ [[self._drivetrain.A_continuous[1, 1], self._drivetrain.A_continuous[1, 3]],
+ [self._drivetrain.A_continuous[3, 1], self._drivetrain.A_continuous[3, 3]]])
+
+ self.B_continuous = numpy.matrix(
+ [[self._drivetrain.B_continuous[1, 0], self._drivetrain.B_continuous[1, 1]],
+ [self._drivetrain.B_continuous[3, 0], self._drivetrain.B_continuous[3, 1]]])
+ self.C = numpy.matrix(numpy.eye(2))
+ self.D = numpy.matrix(numpy.zeros((2, 2)))
+
+ self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+ self.B_continuous, self.dt)
+
+ # FF * X = U (steady state)
+ self.FF = self.B.I * (numpy.eye(2) - self.A)
+
+ self.PlaceControllerPoles([0.90, 0.90])
+ self.PlaceObserverPoles([0.02, 0.02])
+
+ self.G_high = self._drivetrain.G_high
+ self.G_low = self._drivetrain.G_low
+ self.resistance = self._drivetrain.resistance
+ self.r = self._drivetrain.r
+ self.Kv = self._drivetrain.Kv
+ self.Kt = self._drivetrain.Kt
+
+ self.U_max = self._drivetrain.U_max
+ self.U_min = self._drivetrain.U_min
+
+
+class VelocityDrivetrain(object):
+ HIGH = 'high'
+ LOW = 'low'
+ SHIFTING_UP = 'up'
+ SHIFTING_DOWN = 'down'
+
+ def __init__(self):
+ self.drivetrain_low_low = VelocityDrivetrainModel(
+ left_low=True, right_low=True, name='VelocityDrivetrainLowLow')
+ self.drivetrain_low_high = VelocityDrivetrainModel(left_low=True, right_low=False, name='VelocityDrivetrainLowHigh')
+ self.drivetrain_high_low = VelocityDrivetrainModel(left_low=False, right_low=True, name = 'VelocityDrivetrainHighLow')
+ self.drivetrain_high_high = VelocityDrivetrainModel(left_low=False, right_low=False, name = 'VelocityDrivetrainHighHigh')
+
+ # X is [lvel, rvel]
+ self.X = numpy.matrix(
+ [[0.0],
+ [0.0]])
+
+ self.U_poly = polytope.HPolytope(
+ numpy.matrix([[1, 0],
+ [-1, 0],
+ [0, 1],
+ [0, -1]]),
+ numpy.matrix([[12],
+ [12],
+ [12],
+ [12]]))
+
+ self.U_max = numpy.matrix(
+ [[12.0],
+ [12.0]])
+ self.U_min = numpy.matrix(
+ [[-12.0000000000],
+ [-12.0000000000]])
+
+ self.dt = 0.00505
+
+ self.R = numpy.matrix(
+ [[0.0],
+ [0.0]])
+
+ self.U_ideal = numpy.matrix(
+ [[0.0],
+ [0.0]])
+
+ # ttrust is the comprimise between having full throttle negative inertia,
+ # and having no throttle negative inertia. A value of 0 is full throttle
+ # inertia. A value of 1 is no throttle negative inertia.
+ self.ttrust = 1.0
+
+ self.left_gear = VelocityDrivetrain.LOW
+ self.right_gear = VelocityDrivetrain.LOW
+ self.left_shifter_position = 0.0
+ self.right_shifter_position = 0.0
+ self.left_cim = CIM()
+ self.right_cim = CIM()
+
+ def IsInGear(self, gear):
+ return gear is VelocityDrivetrain.HIGH or gear is VelocityDrivetrain.LOW
+
+ def MotorRPM(self, shifter_position, velocity):
+ if shifter_position > 0.5:
+ return (velocity / self.CurrentDrivetrain().G_high /
+ self.CurrentDrivetrain().r)
+ else:
+ return (velocity / self.CurrentDrivetrain().G_low /
+ self.CurrentDrivetrain().r)
+
+ def CurrentDrivetrain(self):
+ if self.left_shifter_position > 0.5:
+ if self.right_shifter_position > 0.5:
+ return self.drivetrain_high_high
+ else:
+ return self.drivetrain_high_low
+ else:
+ if self.right_shifter_position > 0.5:
+ return self.drivetrain_low_high
+ else:
+ return self.drivetrain_low_low
+
+ def SimShifter(self, gear, shifter_position):
+ if gear is VelocityDrivetrain.HIGH or gear is VelocityDrivetrain.SHIFTING_UP:
+ shifter_position = min(shifter_position + 0.5, 1.0)
+ else:
+ shifter_position = max(shifter_position - 0.5, 0.0)
+
+ if shifter_position == 1.0:
+ gear = VelocityDrivetrain.HIGH
+ elif shifter_position == 0.0:
+ gear = VelocityDrivetrain.LOW
+
+ return gear, shifter_position
+
+ def ComputeGear(self, wheel_velocity, should_print=False, current_gear=False, gear_name=None):
+ high_omega = (wheel_velocity / self.CurrentDrivetrain().G_high /
+ self.CurrentDrivetrain().r)
+ low_omega = (wheel_velocity / self.CurrentDrivetrain().G_low /
+ self.CurrentDrivetrain().r)
+ #print gear_name, "Motor Energy Difference.", 0.5 * 0.000140032647 * (low_omega * low_omega - high_omega * high_omega), "joules"
+ high_torque = ((12.0 - high_omega / self.CurrentDrivetrain().Kv) *
+ self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().resistance)
+ low_torque = ((12.0 - low_omega / self.CurrentDrivetrain().Kv) *
+ self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().resistance)
+ high_power = high_torque * high_omega
+ low_power = low_torque * low_omega
+ #if should_print:
+ # print gear_name, "High omega", high_omega, "Low omega", low_omega
+ # print gear_name, "High torque", high_torque, "Low torque", low_torque
+ # print gear_name, "High power", high_power, "Low power", low_power
+
+ # Shift algorithm improvements.
+ # TODO(aschuh):
+ # It takes time to shift. Shifting down for 1 cycle doesn't make sense
+ # because you will end up slower than without shifting. Figure out how
+ # to include that info.
+ # If the driver is still in high gear, but isn't asking for the extra power
+ # from low gear, don't shift until he asks for it.
+ goal_gear_is_high = high_power > low_power
+ #goal_gear_is_high = True
+
+ if not self.IsInGear(current_gear):
+ glog.debug('%s Not in gear.', gear_name)
+ return current_gear
+ else:
+ is_high = current_gear is VelocityDrivetrain.HIGH
+ if is_high != goal_gear_is_high:
+ if goal_gear_is_high:
+ glog.debug('%s Shifting up.', gear_name)
+ return VelocityDrivetrain.SHIFTING_UP
+ else:
+ glog.debug('%s Shifting down.', gear_name)
+ return VelocityDrivetrain.SHIFTING_DOWN
+ else:
+ return current_gear
+
+ def FilterVelocity(self, throttle):
+ # Invert the plant to figure out how the velocity filter would have to work
+ # out in order to filter out the forwards negative inertia.
+ # This math assumes that the left and right power and velocity are equal.
+
+ # The throttle filter should filter such that the motor in the highest gear
+ # should be controlling the time constant.
+ # Do this by finding the index of FF that has the lowest value, and computing
+ # the sums using that index.
+ FF_sum = self.CurrentDrivetrain().FF.sum(axis=1)
+ min_FF_sum_index = numpy.argmin(FF_sum)
+ min_FF_sum = FF_sum[min_FF_sum_index, 0]
+ min_K_sum = self.CurrentDrivetrain().K[min_FF_sum_index, :].sum()
+ # Compute the FF sum for high gear.
+ high_min_FF_sum = self.drivetrain_high_high.FF[0, :].sum()
+
+ # U = self.K[0, :].sum() * (R - x_avg) + self.FF[0, :].sum() * R
+ # throttle * 12.0 = (self.K[0, :].sum() + self.FF[0, :].sum()) * R
+ # - self.K[0, :].sum() * x_avg
+
+ # R = (throttle * 12.0 + self.K[0, :].sum() * x_avg) /
+ # (self.K[0, :].sum() + self.FF[0, :].sum())
+
+ # U = (K + FF) * R - K * X
+ # (K + FF) ^-1 * (U + K * X) = R
+
+ # Scale throttle by min_FF_sum / high_min_FF_sum. This will make low gear
+ # have the same velocity goal as high gear, and so that the robot will hold
+ # the same speed for the same throttle for all gears.
+ adjusted_ff_voltage = numpy.clip(throttle * 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0)
+ return ((adjusted_ff_voltage + self.ttrust * min_K_sum * (self.X[0, 0] + self.X[1, 0]) / 2.0)
+ / (self.ttrust * min_K_sum + min_FF_sum))
+
+ def Update(self, throttle, steering):
+ # Shift into the gear which sends the most power to the floor.
+ # This is the same as sending the most torque down to the floor at the
+ # wheel.
+
+ self.left_gear = self.right_gear = True
+ if True:
+ self.left_gear = self.ComputeGear(self.X[0, 0], should_print=True,
+ current_gear=self.left_gear,
+ gear_name="left")
+ self.right_gear = self.ComputeGear(self.X[1, 0], should_print=True,
+ current_gear=self.right_gear,
+ gear_name="right")
+ if self.IsInGear(self.left_gear):
+ self.left_cim.X[0, 0] = self.MotorRPM(self.left_shifter_position, self.X[0, 0])
+
+ if self.IsInGear(self.right_gear):
+ self.right_cim.X[0, 0] = self.MotorRPM(self.right_shifter_position, self.X[0, 0])
+
+ if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
+ # Filter the throttle to provide a nicer response.
+ fvel = self.FilterVelocity(throttle)
+
+ # Constant radius means that angualar_velocity / linear_velocity = constant.
+ # Compute the left and right velocities.
+ steering_velocity = numpy.abs(fvel) * steering
+ left_velocity = fvel - steering_velocity
+ right_velocity = fvel + steering_velocity
+
+ # Write this constraint in the form of K * R = w
+ # angular velocity / linear velocity = constant
+ # (left - right) / (left + right) = constant
+ # left - right = constant * left + constant * right
+
+ # (fvel - steering * numpy.abs(fvel) - fvel - steering * numpy.abs(fvel)) /
+ # (fvel - steering * numpy.abs(fvel) + fvel + steering * numpy.abs(fvel)) =
+ # constant
+ # (- 2 * steering * numpy.abs(fvel)) / (2 * fvel) = constant
+ # (-steering * sign(fvel)) = constant
+ # (-steering * sign(fvel)) * (left + right) = left - right
+ # (steering * sign(fvel) + 1) * left + (steering * sign(fvel) - 1) * right = 0
+
+ equality_k = numpy.matrix(
+ [[1 + steering * numpy.sign(fvel), -(1 - steering * numpy.sign(fvel))]])
+ equality_w = 0.0
+
+ self.R[0, 0] = left_velocity
+ self.R[1, 0] = right_velocity
+
+ # Construct a constraint on R by manipulating the constraint on U
+ # Start out with H * U <= k
+ # U = FF * R + K * (R - X)
+ # H * (FF * R + K * R - K * X) <= k
+ # H * (FF + K) * R <= k + H * K * X
+ R_poly = polytope.HPolytope(
+ self.U_poly.H * (self.CurrentDrivetrain().K + self.CurrentDrivetrain().FF),
+ self.U_poly.k + self.U_poly.H * self.CurrentDrivetrain().K * self.X)
+
+ # Limit R back inside the box.
+ self.boxed_R = CoerceGoal(R_poly, equality_k, equality_w, self.R)
+
+ FF_volts = self.CurrentDrivetrain().FF * self.boxed_R
+ self.U_ideal = self.CurrentDrivetrain().K * (self.boxed_R - self.X) + FF_volts
+ else:
+ glog.debug('Not all in gear')
+ if not self.IsInGear(self.left_gear) and not self.IsInGear(self.right_gear):
+ # TODO(austin): Use battery volts here.
+ R_left = self.MotorRPM(self.left_shifter_position, self.X[0, 0])
+ self.U_ideal[0, 0] = numpy.clip(
+ self.left_cim.K * (R_left - self.left_cim.X) + R_left / self.left_cim.Kv,
+ self.left_cim.U_min, self.left_cim.U_max)
+ self.left_cim.Update(self.U_ideal[0, 0])
+
+ R_right = self.MotorRPM(self.right_shifter_position, self.X[1, 0])
+ self.U_ideal[1, 0] = numpy.clip(
+ self.right_cim.K * (R_right - self.right_cim.X) + R_right / self.right_cim.Kv,
+ self.right_cim.U_min, self.right_cim.U_max)
+ self.right_cim.Update(self.U_ideal[1, 0])
+ else:
+ assert False
+
+ self.U = numpy.clip(self.U_ideal, self.U_min, self.U_max)
+
+ # TODO(austin): Model the robot as not accelerating when you shift...
+ # This hack only works when you shift at the same time.
+ if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
+ self.X = self.CurrentDrivetrain().A * self.X + self.CurrentDrivetrain().B * self.U
+
+ self.left_gear, self.left_shifter_position = self.SimShifter(
+ self.left_gear, self.left_shifter_position)
+ self.right_gear, self.right_shifter_position = self.SimShifter(
+ self.right_gear, self.right_shifter_position)
+
+ glog.debug('U is %s %s', str(self.U[0, 0]), str(self.U[1, 0]))
+ glog.debug('Left shifter %s %d Right shifter %s %d',
+ self.left_gear, self.left_shifter_position,
+ self.right_gear, self.right_shifter_position)
+
+
+def main(argv):
+ vdrivetrain = VelocityDrivetrain()
+
+ if not FLAGS.plot:
+ if len(argv) != 5:
+ glog.fatal('Expected .h file name and .cc file name')
+ else:
+ namespaces = ['y2017_bot3', 'control_loops', 'drivetrain']
+ dog_loop_writer = control_loop.ControlLoopWriter(
+ "VelocityDrivetrain", [vdrivetrain.drivetrain_low_low,
+ vdrivetrain.drivetrain_low_high,
+ vdrivetrain.drivetrain_high_low,
+ vdrivetrain.drivetrain_high_high],
+ namespaces=namespaces)
+
+ dog_loop_writer.Write(argv[1], argv[2])
+
+ cim_writer = control_loop.ControlLoopWriter("CIM", [CIM()])
+
+ cim_writer.Write(argv[3], argv[4])
+ return
+
+ vl_plot = []
+ vr_plot = []
+ ul_plot = []
+ ur_plot = []
+ radius_plot = []
+ t_plot = []
+ left_gear_plot = []
+ right_gear_plot = []
+ vdrivetrain.left_shifter_position = 0.0
+ vdrivetrain.right_shifter_position = 0.0
+ vdrivetrain.left_gear = VelocityDrivetrain.LOW
+ vdrivetrain.right_gear = VelocityDrivetrain.LOW
+
+ glog.debug('K is %s', str(vdrivetrain.CurrentDrivetrain().K))
+
+ if vdrivetrain.left_gear is VelocityDrivetrain.HIGH:
+ glog.debug('Left is high')
+ else:
+ glog.debug('Left is low')
+ if vdrivetrain.right_gear is VelocityDrivetrain.HIGH:
+ glog.debug('Right is high')
+ else:
+ glog.debug('Right is low')
+
+ for t in numpy.arange(0, 1.7, vdrivetrain.dt):
+ if t < 0.5:
+ vdrivetrain.Update(throttle=0.00, steering=1.0)
+ elif t < 1.2:
+ vdrivetrain.Update(throttle=0.5, steering=1.0)
+ else:
+ vdrivetrain.Update(throttle=0.00, steering=1.0)
+ t_plot.append(t)
+ vl_plot.append(vdrivetrain.X[0, 0])
+ vr_plot.append(vdrivetrain.X[1, 0])
+ ul_plot.append(vdrivetrain.U[0, 0])
+ ur_plot.append(vdrivetrain.U[1, 0])
+ left_gear_plot.append((vdrivetrain.left_gear is VelocityDrivetrain.HIGH) * 2.0 - 10.0)
+ right_gear_plot.append((vdrivetrain.right_gear is VelocityDrivetrain.HIGH) * 2.0 - 10.0)
+
+ fwd_velocity = (vdrivetrain.X[1, 0] + vdrivetrain.X[0, 0]) / 2
+ turn_velocity = (vdrivetrain.X[1, 0] - vdrivetrain.X[0, 0])
+ if abs(fwd_velocity) < 0.0000001:
+ radius_plot.append(turn_velocity)
+ else:
+ radius_plot.append(turn_velocity / fwd_velocity)
+
+ # TODO(austin):
+ # Shifting compensation.
+
+ # Tighten the turn.
+ # Closed loop drive.
+
+ pylab.plot(t_plot, vl_plot, label='left velocity')
+ pylab.plot(t_plot, vr_plot, label='right velocity')
+ pylab.plot(t_plot, ul_plot, label='left voltage')
+ pylab.plot(t_plot, ur_plot, label='right voltage')
+ pylab.plot(t_plot, radius_plot, label='radius')
+ pylab.plot(t_plot, left_gear_plot, label='left gear high')
+ pylab.plot(t_plot, right_gear_plot, label='right gear high')
+ pylab.legend()
+ pylab.show()
+ return 0
+
+if __name__ == '__main__':
+ argv = FLAGS(sys.argv)
+ glog.init()
+ sys.exit(main(argv))
diff --git a/y2017_bot3/wpilib_interface.cc b/y2017_bot3/wpilib_interface.cc
new file mode 100644
index 0000000..737050a
--- /dev/null
+++ b/y2017_bot3/wpilib_interface.cc
@@ -0,0 +1,517 @@
+#include <inttypes.h>
+#include <stdio.h>
+#include <string.h>
+#include <unistd.h>
+
+#include <array>
+#include <chrono>
+#include <cmath>
+#include <functional>
+#include <mutex>
+#include <thread>
+
+#include "AnalogInput.h"
+#include "DigitalGlitchFilter.h"
+#include "DriverStation.h"
+#include "Encoder.h"
+#include "Compressor.h"
+#include "VictorSP.h"
+#undef ERROR
+
+#include "aos/common/commonmath.h"
+#include "aos/common/logging/logging.h"
+#include "aos/common/logging/queue_logging.h"
+#include "aos/common/messages/robot_state.q.h"
+#include "aos/common/stl_mutex.h"
+#include "aos/common/time.h"
+#include "aos/common/util/compiler_memory_barrier.h"
+#include "aos/common/util/log_interval.h"
+#include "aos/common/util/phased_loop.h"
+#include "aos/linux_code/init.h"
+
+#include "frc971/control_loops/control_loops.q.h"
+#include "frc971/control_loops/drivetrain/drivetrain.q.h"
+#include "frc971/wpilib/ADIS16448.h"
+#include "frc971/wpilib/buffered_pcm.h"
+#include "frc971/wpilib/buffered_solenoid.h"
+#include "frc971/wpilib/gyro_sender.h"
+#include "frc971/wpilib/dma.h"
+#include "frc971/wpilib/dma_edge_counting.h"
+#include "frc971/wpilib/encoder_and_potentiometer.h"
+#include "frc971/wpilib/interrupt_edge_counting.h"
+#include "frc971/wpilib/joystick_sender.h"
+#include "frc971/wpilib/logging.q.h"
+#include "frc971/wpilib/loop_output_handler.h"
+#include "frc971/wpilib/pdp_fetcher.h"
+#include "frc971/wpilib/wpilib_interface.h"
+#include "frc971/wpilib/wpilib_robot_base.h"
+
+#include "y2017_bot3/control_loops/drivetrain/drivetrain_dog_motor_plant.h"
+#include "frc971/control_loops/drivetrain/drivetrain.q.h"
+
+#ifndef M_PI
+#define M_PI 3.14159265358979323846
+#endif
+
+using ::frc971::control_loops::drivetrain_queue;
+using ::aos::monotonic_clock;
+namespace chrono = ::std::chrono;
+
+namespace y2017_bot3 {
+namespace wpilib {
+namespace {
+
+constexpr double kMaxBringupPower = 12.0;
+
+constexpr double kDrivetrainCyclesPerRevolution = 256;
+constexpr double kDrivetrainEncoderCountsPerRevolution =
+ kDrivetrainCyclesPerRevolution * 4;
+constexpr double kDrivetrainEncoderRatio =
+ 1.0 * control_loops::drivetrain::kWheelRadius;
+constexpr double kMaxDrivetrainEncoderPulsesPerSecond =
+ control_loops::drivetrain::kFreeSpeed *
+ control_loops::drivetrain::kHighOutputRatio /
+ kDrivetrainEncoderRatio *
+ kDrivetrainEncoderCountsPerRevolution;
+
+// TODO(Brian): Fix the interpretation of the result of GetRaw here and in the
+// DMA stuff and then removing the * 2.0 in *_translate.
+// The low bit is direction.
+
+// TODO(brian): Replace this with ::std::make_unique once all our toolchains
+// have support.
+template <class T, class... U>
+std::unique_ptr<T> make_unique(U &&... u) {
+ return std::unique_ptr<T>(new T(std::forward<U>(u)...));
+}
+
+// TODO(brian): Use ::std::max instead once we have C++14 so that can be
+// constexpr.
+template <typename T>
+constexpr T max(T a, T b) {
+ return (a > b) ? a : b;
+}
+template <typename T, typename... Rest>
+constexpr T max(T a, T b, T c, Rest... rest) {
+ return max(max(a, b), c, rest...);
+}
+
+double hall_translate(double in) {
+ // Turn voltage from our 3-state halls into a ratio that the loop can use.
+ return in / 5.0;
+}
+
+double drivetrain_translate(int32_t in) {
+ return -static_cast<double>(in) / (256.0 /*cpr*/ * 4.0 /*4x*/) *
+ kDrivetrainEncoderRatio *
+ control_loops::drivetrain::kWheelRadius * 2.0 * M_PI;
+}
+
+double drivetrain_velocity_translate(double in) {
+ return (1.0 / in) / 256.0 /*cpr*/ *
+ kDrivetrainEncoderRatio *
+ control_loops::drivetrain::kWheelRadius * 2.0 * M_PI;
+}
+
+constexpr double kMaxFastEncoderPulsesPerSecond =
+ kMaxDrivetrainEncoderPulsesPerSecond;
+static_assert(kMaxFastEncoderPulsesPerSecond <= 1300000,
+ "fast encoders are too fast");
+
+// Class to send position messages with sensor readings to our loops.
+class SensorReader {
+ public:
+ SensorReader() {
+ // Set to filter out anything shorter than 1/4 of the minimum pulse width
+ // we should ever see.
+ fast_encoder_filter_.SetPeriodNanoSeconds(
+ static_cast<int>(1 / 4.0 /* built-in tolerance */ /
+ kMaxFastEncoderPulsesPerSecond * 1e9 +
+ 0.5));
+ hall_filter_.SetPeriodNanoSeconds(100000);
+ }
+
+ void set_drivetrain_left_encoder(::std::unique_ptr<Encoder> encoder) {
+ fast_encoder_filter_.Add(encoder.get());
+ drivetrain_left_encoder_ = ::std::move(encoder);
+ }
+
+ void set_drivetrain_right_encoder(::std::unique_ptr<Encoder> encoder) {
+ fast_encoder_filter_.Add(encoder.get());
+ drivetrain_right_encoder_ = ::std::move(encoder);
+ }
+
+ void set_drivetrain_left_hall(::std::unique_ptr<AnalogInput> analog) {
+ drivetrain_left_hall_ = ::std::move(analog);
+ }
+
+ void set_drivetrain_right_hall(::std::unique_ptr<AnalogInput> analog) {
+ drivetrain_right_hall_ = ::std::move(analog);
+ }
+
+ void set_pwm_trigger(::std::unique_ptr<DigitalInput> pwm_trigger) {
+ medium_encoder_filter_.Add(pwm_trigger.get());
+ pwm_trigger_ = ::std::move(pwm_trigger);
+ }
+
+ // All of the DMA-related set_* calls must be made before this, and it
+ // doesn't
+ // hurt to do all of them.
+ void set_dma(::std::unique_ptr<DMA> dma) {
+ dma_synchronizer_.reset(
+ new ::frc971::wpilib::DMASynchronizer(::std::move(dma)));
+ }
+
+ void RunPWMDetecter() {
+ ::aos::SetCurrentThreadRealtimePriority(41);
+
+ pwm_trigger_->RequestInterrupts();
+ // Rising edge only.
+ pwm_trigger_->SetUpSourceEdge(true, false);
+
+ monotonic_clock::time_point last_posedge_monotonic =
+ monotonic_clock::min_time;
+
+ while (run_) {
+ auto ret = pwm_trigger_->WaitForInterrupt(1.0, true);
+ if (ret == InterruptableSensorBase::WaitResult::kRisingEdge) {
+ // Grab all the clocks.
+ const double pwm_fpga_time = pwm_trigger_->ReadRisingTimestamp();
+
+ aos_compiler_memory_barrier();
+ const double fpga_time_before = GetFPGATime() * 1e-6;
+ aos_compiler_memory_barrier();
+ const monotonic_clock::time_point monotonic_now =
+ monotonic_clock::now();
+ aos_compiler_memory_barrier();
+ const double fpga_time_after = GetFPGATime() * 1e-6;
+ aos_compiler_memory_barrier();
+
+ const double fpga_offset =
+ (fpga_time_after + fpga_time_before) / 2.0 - pwm_fpga_time;
+
+ // Compute when the edge was.
+ const monotonic_clock::time_point monotonic_edge =
+ monotonic_now - chrono::duration_cast<chrono::nanoseconds>(
+ chrono::duration<double>(fpga_offset));
+
+ LOG(INFO, "Got PWM pulse %f spread, %f offset, %lld trigger\n",
+ fpga_time_after - fpga_time_before, fpga_offset,
+ monotonic_edge.time_since_epoch().count());
+
+ // Compute bounds on the timestep and sampling times.
+ const double fpga_sample_length = fpga_time_after - fpga_time_before;
+ const chrono::nanoseconds elapsed_time =
+ monotonic_edge - last_posedge_monotonic;
+
+ last_posedge_monotonic = monotonic_edge;
+
+ // Verify that the values are sane.
+ if (fpga_sample_length > 2e-5 || fpga_sample_length < 0) {
+ continue;
+ }
+ if (fpga_offset < 0 || fpga_offset > 0.00015) {
+ continue;
+ }
+ if (elapsed_time >
+ chrono::microseconds(5050) + chrono::microseconds(4) ||
+ elapsed_time <
+ chrono::microseconds(5050) - chrono::microseconds(4)) {
+ continue;
+ }
+ // Good edge!
+ {
+ ::std::unique_lock<::aos::stl_mutex> locker(tick_time_mutex_);
+ last_tick_time_monotonic_timepoint_ = last_posedge_monotonic;
+ last_period_ = elapsed_time;
+ }
+ } else {
+ LOG(INFO, "PWM triggered %d\n", ret);
+ }
+ }
+ pwm_trigger_->CancelInterrupts();
+ }
+
+ void operator()() {
+ ::aos::SetCurrentThreadName("SensorReader");
+
+ my_pid_ = getpid();
+ ds_ = &DriverStation::GetInstance();
+
+ dma_synchronizer_->Start();
+
+ ::aos::time::PhasedLoop phased_loop(last_period_,
+ ::std::chrono::milliseconds(3));
+ chrono::nanoseconds filtered_period = last_period_;
+
+ ::std::thread pwm_detecter_thread(
+ ::std::bind(&SensorReader::RunPWMDetecter, this));
+
+ ::aos::SetCurrentThreadRealtimePriority(40);
+ while (run_) {
+ {
+ const int iterations = phased_loop.SleepUntilNext();
+ if (iterations != 1) {
+ LOG(WARNING, "SensorReader skipped %d iterations\n", iterations - 1);
+ }
+ }
+ RunIteration();
+
+ monotonic_clock::time_point last_tick_timepoint;
+ chrono::nanoseconds period;
+ {
+ ::std::unique_lock<::aos::stl_mutex> locker(tick_time_mutex_);
+ last_tick_timepoint = last_tick_time_monotonic_timepoint_;
+ period = last_period_;
+ }
+
+ if (last_tick_timepoint == monotonic_clock::min_time) {
+ continue;
+ }
+ chrono::nanoseconds new_offset = phased_loop.OffsetFromIntervalAndTime(
+ period, last_tick_timepoint + chrono::microseconds(2050));
+
+ // TODO(austin): If this is the first edge in a while, skip to it (plus
+ // an offset). Otherwise, slowly drift time to line up.
+
+ phased_loop.set_interval_and_offset(period, new_offset);
+ }
+ pwm_detecter_thread.join();
+ }
+
+ void RunIteration() {
+ ::frc971::wpilib::SendRobotState(my_pid_, ds_);
+
+ {
+ auto drivetrain_message = drivetrain_queue.position.MakeMessage();
+ drivetrain_message->right_encoder =
+ drivetrain_translate(drivetrain_right_encoder_->GetRaw());
+ drivetrain_message->right_speed =
+ drivetrain_velocity_translate(drivetrain_right_encoder_->GetPeriod());
+
+ drivetrain_message->left_encoder =
+ -drivetrain_translate(drivetrain_left_encoder_->GetRaw());
+ drivetrain_message->left_speed =
+ drivetrain_velocity_translate(drivetrain_left_encoder_->GetPeriod());
+
+ drivetrain_message->left_shifter_position =
+ hall_translate(drivetrain_left_hall_->GetVoltage());
+ drivetrain_message->right_shifter_position =
+ hall_translate(drivetrain_right_hall_->GetVoltage());
+
+ drivetrain_message.Send();
+ }
+
+ dma_synchronizer_->RunIteration();
+ }
+
+ void Quit() { run_ = false; }
+
+ private:
+ double encoder_translate(int32_t value, double counts_per_revolution,
+ double ratio) {
+ return static_cast<double>(value) / counts_per_revolution * ratio *
+ (2.0 * M_PI);
+ }
+
+ int32_t my_pid_;
+ DriverStation *ds_;
+
+ // Mutex to manage access to the period and tick time variables.
+ ::aos::stl_mutex tick_time_mutex_;
+ monotonic_clock::time_point last_tick_time_monotonic_timepoint_ =
+ monotonic_clock::min_time;
+ chrono::nanoseconds last_period_ = chrono::microseconds(5050);
+
+ ::std::unique_ptr<::frc971::wpilib::DMASynchronizer> dma_synchronizer_;
+
+ ::std::unique_ptr<Encoder> drivetrain_left_encoder_,
+ drivetrain_right_encoder_;
+
+ ::std::unique_ptr<AnalogInput> drivetrain_left_hall_, drivetrain_right_hall_;
+
+ ::std::unique_ptr<DigitalInput> pwm_trigger_;
+
+ ::std::atomic<bool> run_{true};
+
+ DigitalGlitchFilter fast_encoder_filter_, medium_encoder_filter_, hall_filter_;
+};
+
+class SolenoidWriter {
+ public:
+ SolenoidWriter(const ::std::unique_ptr<::frc971::wpilib::BufferedPcm> &pcm)
+ : pcm_(pcm),
+ drivetrain_(".y2017_bot3.control_loops.drivetrain_queue.output"){}
+ void set_compressor(::std::unique_ptr<Compressor> compressor) {
+ compressor_ = ::std::move(compressor);
+ }
+
+ void set_drivetrain_shifter(
+ ::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
+ drivetrain_shifter_ = ::std::move(s);
+ }
+
+ void operator()() {
+ compressor_->Start();
+ ::aos::SetCurrentThreadName("Solenoids");
+ ::aos::SetCurrentThreadRealtimePriority(27);
+
+ ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(20),
+ ::std::chrono::milliseconds(1));
+
+ while (run_) {
+ {
+ int iterations = phased_loop.SleepUntilNext();
+ if (iterations != 1) {
+ LOG(DEBUG, "Solenoids skipped %d iterations\n", iterations - 1);
+ }
+ }
+
+ {
+ drivetrain_.FetchLatest();
+ if (drivetrain_.get()) {
+ LOG_STRUCT(DEBUG, "solenoids", *drivetrain_);
+ drivetrain_shifter_->Set(
+ !(drivetrain_->left_high || drivetrain_->right_high));
+ }
+ }
+
+ {
+ ::frc971::wpilib::PneumaticsToLog to_log;
+ {
+ to_log.compressor_on = compressor_->Enabled();
+ }
+
+ pcm_->Flush();
+ to_log.read_solenoids = pcm_->GetAll();
+ LOG_STRUCT(DEBUG, "pneumatics info", to_log);
+ }
+ }
+ }
+
+ void Quit() { run_ = false; }
+
+ private:
+ const ::std::unique_ptr<::frc971::wpilib::BufferedPcm> &pcm_;
+ ::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> drivetrain_shifter_;
+
+ ::std::unique_ptr<Compressor> compressor_;
+
+ ::aos::Queue<::frc971::control_loops::DrivetrainQueue::Output> drivetrain_;
+
+ ::std::atomic<bool> run_{true};
+};
+
+class DrivetrainWriter : public ::frc971::wpilib::LoopOutputHandler {
+ public:
+ void set_drivetrain_left_victor(::std::unique_ptr<::frc::VictorSP> t) {
+ drivetrain_left_victor_ = ::std::move(t);
+ }
+
+ void set_drivetrain_right_victor(::std::unique_ptr<::frc::VictorSP> t) {
+ drivetrain_right_victor_ = ::std::move(t);
+ };
+ private:
+ virtual void Read() override {
+ ::frc971::control_loops::drivetrain_queue.output.FetchAnother();
+ }
+
+ virtual void Write() override {
+ auto &queue = ::frc971::control_loops::drivetrain_queue.output;
+ LOG_STRUCT(DEBUG, "will output", *queue);
+ drivetrain_left_victor_->SetSpeed(-queue->left_voltage / 12.0);
+ drivetrain_right_victor_->SetSpeed(queue->right_voltage / 12.0);
+ }
+
+ virtual void Stop() override {
+ LOG(WARNING, "drivetrain output too old\n");
+ drivetrain_left_victor_->SetDisabled();
+ drivetrain_right_victor_->SetDisabled();
+ }
+
+ ::std::unique_ptr<::frc::VictorSP> drivetrain_left_victor_,
+ drivetrain_right_victor_;
+};
+
+class WPILibRobot : public ::frc971::wpilib::WPILibRobotBase {
+ public:
+ ::std::unique_ptr<Encoder> make_encoder(int index) {
+ return make_unique<Encoder>(10 + index * 2, 11 + index * 2, false,
+ Encoder::k4X);
+ }
+
+ void Run() override {
+ ::aos::InitNRT();
+ ::aos::SetCurrentThreadName("StartCompetition");
+
+ ::frc971::wpilib::JoystickSender joystick_sender;
+ ::std::thread joystick_thread(::std::ref(joystick_sender));
+
+ ::frc971::wpilib::PDPFetcher pdp_fetcher;
+ ::std::thread pdp_fetcher_thread(::std::ref(pdp_fetcher));
+ SensorReader reader;
+
+ // TODO(sabina): Update port numbers
+ reader.set_drivetrain_left_encoder(make_encoder(0));
+ reader.set_drivetrain_right_encoder(make_encoder(1));
+ reader.set_drivetrain_left_hall(make_unique<AnalogInput>(0));
+ reader.set_drivetrain_right_hall(make_unique<AnalogInput>(1));
+
+ reader.set_pwm_trigger(make_unique<DigitalInput>(7));
+ reader.set_dma(make_unique<DMA>());
+ ::std::thread reader_thread(::std::ref(reader));
+
+ ::frc971::wpilib::GyroSender gyro_sender;
+ ::std::thread gyro_thread(::std::ref(gyro_sender));
+
+ DrivetrainWriter drivetrain_writer;
+ drivetrain_writer.set_drivetrain_left_victor(
+ ::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(7)));
+ drivetrain_writer.set_drivetrain_right_victor(
+ ::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(3)));
+ ::std::thread drivetrain_writer_thread(::std::ref(drivetrain_writer));
+
+ ::std::unique_ptr<::frc971::wpilib::BufferedPcm> pcm(
+ new ::frc971::wpilib::BufferedPcm());
+ SolenoidWriter solenoid_writer(pcm);
+ solenoid_writer.set_drivetrain_shifter(pcm->MakeSolenoid(0));
+
+ solenoid_writer.set_compressor(make_unique<Compressor>());
+
+ ::std::thread solenoid_thread(::std::ref(solenoid_writer));
+
+ // Wait forever. Not much else to do...
+ while (true) {
+ const int r = select(0, nullptr, nullptr, nullptr, nullptr);
+ if (r != 0) {
+ PLOG(WARNING, "infinite select failed");
+ } else {
+ PLOG(WARNING, "infinite select succeeded??\n");
+ }
+ }
+
+ LOG(ERROR, "Exiting WPILibRobot\n");
+
+ joystick_sender.Quit();
+ joystick_thread.join();
+ pdp_fetcher.Quit();
+ pdp_fetcher_thread.join();
+ reader.Quit();
+ reader_thread.join();
+ gyro_sender.Quit();
+ gyro_thread.join();
+
+ drivetrain_writer.Quit();
+ drivetrain_writer_thread.join();
+ solenoid_writer.Quit();
+ solenoid_thread.join();
+
+ ::aos::Cleanup();
+ }
+};
+
+} // namespace
+} // namespace wpilib
+} // namespace y2017_bot3
+
+AOS_ROBOT_CLASS(::y2017_bot3::wpilib::WPILibRobot);