Run yapf on all python files in the repo

Signed-off-by: Ravago Jones <ravagojones@gmail.com>
Change-Id: I221e04c3f517fab8535b22551553799e0fee7a80
diff --git a/y2014/control_loops/python/dt_mpc.py b/y2014/control_loops/python/dt_mpc.py
index 0c229c1..2f13807 100755
--- a/y2014/control_loops/python/dt_mpc.py
+++ b/y2014/control_loops/python/dt_mpc.py
@@ -13,8 +13,9 @@
 #
 # Inital algorithm from http://www.ece.ufrgs.br/~fetter/icma05_608.pdf
 
+
 def cartesian_to_polar(X_cartesian):
-  """Converts a cartesian coordinate to polar.
+    """Converts a cartesian coordinate to polar.
 
   Args:
     X_cartesian, numpy.matrix[3, 1] with x, y, theta as rows.
@@ -22,13 +23,13 @@
   Returns:
     numpy.matrix[3, 1] with e, phi, alpha as rows.
   """
-  phi = numpy.arctan2(X_cartesian[1, 0], X_cartesian[0, 0])
-  return numpy.matrix([[numpy.hypot(X_cartesian[0, 0], X_cartesian[1, 0])],
-                       [phi],
-                       [X_cartesian[2, 0] - phi]])
+    phi = numpy.arctan2(X_cartesian[1, 0], X_cartesian[0, 0])
+    return numpy.matrix([[numpy.hypot(X_cartesian[0, 0], X_cartesian[1, 0])],
+                         [phi], [X_cartesian[2, 0] - phi]])
+
 
 def polar_to_cartesian(X_polar):
-  """Converts a polar coordinate to cartesian.
+    """Converts a polar coordinate to cartesian.
 
   Args:
     X_polar, numpy.matrix[3, 1] with e, phi, alpha as rows.
@@ -36,12 +37,13 @@
   Returns:
     numpy.matrix[3, 1] with x, y, theta as rows.
   """
-  return numpy.matrix([[X_polar[0, 0] * numpy.cos(X_polar[1, 0])],
-                       [X_polar[0, 0] * numpy.sin(X_polar[1, 0])],
-                       [X_polar[1, 0] + X_polar[2, 0]]])
+    return numpy.matrix([[X_polar[0, 0] * numpy.cos(X_polar[1, 0])],
+                         [X_polar[0, 0] * numpy.sin(X_polar[1, 0])],
+                         [X_polar[1, 0] + X_polar[2, 0]]])
+
 
 def simulate_dynamics(X_cartesian, U):
-  """Calculates the robot location after 1 timestep.
+    """Calculates the robot location after 1 timestep.
 
   Args:
     X_cartesian, numpy.matrix[3, 1] with the starting location in
@@ -51,15 +53,15 @@
   Returns:
     numpy.matrix[3, 1] with the cartesian coordinate.
   """
-  X_cartesian += numpy.matrix(
-      [[U[0, 0] * numpy.cos(X_cartesian[2, 0]) * dt],
-       [U[0, 0] * numpy.sin(X_cartesian[2, 0]) * dt],
-       [U[1, 0] * dt]])
+    X_cartesian += numpy.matrix([[U[0, 0] * numpy.cos(X_cartesian[2, 0]) * dt],
+                                 [U[0, 0] * numpy.sin(X_cartesian[2, 0]) * dt],
+                                 [U[1, 0] * dt]])
 
-  return X_cartesian
+    return X_cartesian
+
 
 def U_from_array(U_array):
-  """Converts the U array from the optimizer to a bunch of column vectors.
+    """Converts the U array from the optimizer to a bunch of column vectors.
 
   Args:
     U_array, numpy.array[N] The U coordinates in v, av, v, av, ...
@@ -67,10 +69,11 @@
   Returns:
     numpy.matrix[2, N/2] with [[v, v, v, ...], [av, av, av, ...]]
   """
-  return numpy.matrix(U_array).reshape((2, -1), order='F')
+    return numpy.matrix(U_array).reshape((2, -1), order='F')
+
 
 def U_to_array(U_matrix):
-  """Converts the U matrix to the U array for the optimizer.
+    """Converts the U matrix to the U array for the optimizer.
 
   Args:
     U_matrix, numpy.matrix[2, N/2] with [[v, v, v, ...], [av, av, av, ...]]
@@ -78,10 +81,11 @@
   Returns:
     numpy.array[N] The U coordinates in v, av, v, av, ...
   """
-  return numpy.array(U_matrix.reshape((1, -1), order='F'))
+    return numpy.array(U_matrix.reshape((1, -1), order='F'))
+
 
 def cost(U_array, X_cartesian):
-  """Computes the cost given the inital position and the U array.
+    """Computes the cost given the inital position and the U array.
 
   Args:
     U_array: numpy.array[N] The U coordinates.
@@ -91,91 +95,93 @@
   Returns:
     double, The quadratic cost of evaluating U.
   """
-  X_cartesian_mod = X_cartesian.copy()
-  U_matrix = U_from_array(U_array)
-  my_cost = 0
-  Q = numpy.matrix([[0.01, 0, 0],
-                    [0, 0.01, 0],
-                    [0, 0, 0.01]]) / dt / dt
-  R = numpy.matrix([[0.001, 0],
-                    [0, 0.001]]) / dt / dt
-  for U in U_matrix.T:
-    # TODO(austin): Let it go to the point from either side.
-    U = U.T
-    X_cartesian_mod = simulate_dynamics(X_cartesian_mod, U)
-    X_current_polar = cartesian_to_polar(X_cartesian_mod)
-    my_cost += U.T * R * U + X_current_polar.T * Q * X_current_polar
+    X_cartesian_mod = X_cartesian.copy()
+    U_matrix = U_from_array(U_array)
+    my_cost = 0
+    Q = numpy.matrix([[0.01, 0, 0], [0, 0.01, 0], [0, 0, 0.01]]) / dt / dt
+    R = numpy.matrix([[0.001, 0], [0, 0.001]]) / dt / dt
+    for U in U_matrix.T:
+        # TODO(austin): Let it go to the point from either side.
+        U = U.T
+        X_cartesian_mod = simulate_dynamics(X_cartesian_mod, U)
+        X_current_polar = cartesian_to_polar(X_cartesian_mod)
+        my_cost += U.T * R * U + X_current_polar.T * Q * X_current_polar
 
-  return my_cost
+    return my_cost
+
 
 if __name__ == '__main__':
-  X_cartesian = numpy.matrix([[-1.0],
-                              [-1.0],
-                              [0.0]])
-  x_array = []
-  y_array = []
-  theta_array = []
+    X_cartesian = numpy.matrix([[-1.0], [-1.0], [0.0]])
+    x_array = []
+    y_array = []
+    theta_array = []
 
-  e_array = []
-  phi_array = []
-  alpha_array = []
+    e_array = []
+    phi_array = []
+    alpha_array = []
 
-  cost_array = []
+    cost_array = []
 
-  time_array = []
-  u0_array = []
-  u1_array = []
+    time_array = []
+    u0_array = []
+    u1_array = []
 
-  num_steps = 20
+    num_steps = 20
 
-  U_array = numpy.zeros((num_steps * 2))
-  for i in range(400):
-    print('Iteration', i)
-    # Solve the NMPC
-    U_array, fx, _, _, _ = scipy.optimize.fmin_slsqp(
-        cost, U_array.copy(), bounds = [(-1, 1), (-7, 7)] * num_steps,
-        args=(X_cartesian,), iter=500, full_output=True)
-    U_matrix = U_from_array(U_array)
+    U_array = numpy.zeros((num_steps * 2))
+    for i in range(400):
+        print('Iteration', i)
+        # Solve the NMPC
+        U_array, fx, _, _, _ = scipy.optimize.fmin_slsqp(cost,
+                                                         U_array.copy(),
+                                                         bounds=[(-1, 1),
+                                                                 (-7, 7)] *
+                                                         num_steps,
+                                                         args=(X_cartesian, ),
+                                                         iter=500,
+                                                         full_output=True)
+        U_matrix = U_from_array(U_array)
 
-    # Simulate the dynamics
-    X_cartesian = simulate_dynamics(X_cartesian, U_matrix[:, 0])
+        # Simulate the dynamics
+        X_cartesian = simulate_dynamics(X_cartesian, U_matrix[:, 0])
 
-    # Save variables for plotting.
-    cost_array.append(fx[0, 0])
-    u0_array.append(U_matrix[0, 0])
-    u1_array.append(U_matrix[1, 0])
-    x_array.append(X_cartesian[0, 0])
-    y_array.append(X_cartesian[1, 0])
-    theta_array.append(X_cartesian[2, 0])
-    time_array.append(i * dt)
-    X_polar = cartesian_to_polar(X_cartesian)
-    e_array.append(X_polar[0, 0])
-    phi_array.append(X_polar[1, 0])
-    alpha_array.append(X_polar[2, 0])
+        # Save variables for plotting.
+        cost_array.append(fx[0, 0])
+        u0_array.append(U_matrix[0, 0])
+        u1_array.append(U_matrix[1, 0])
+        x_array.append(X_cartesian[0, 0])
+        y_array.append(X_cartesian[1, 0])
+        theta_array.append(X_cartesian[2, 0])
+        time_array.append(i * dt)
+        X_polar = cartesian_to_polar(X_cartesian)
+        e_array.append(X_polar[0, 0])
+        phi_array.append(X_polar[1, 0])
+        alpha_array.append(X_polar[2, 0])
 
-    U_array = U_to_array(numpy.hstack((U_matrix[:, 1:], numpy.matrix([[0], [0]]))))
+        U_array = U_to_array(
+            numpy.hstack((U_matrix[:, 1:], numpy.matrix([[0], [0]]))))
 
-    if fx < 1e-05:
-      print('Cost is', fx, 'after', i, 'cycles, finishing early')
-      break
+        if fx < 1e-05:
+            print('Cost is', fx, 'after', i, 'cycles, finishing early')
+            break
 
-  # Plot
-  pylab.figure('xy')
-  pylab.plot(x_array, y_array, label = 'trajectory')
+    # Plot
+    pylab.figure('xy')
+    pylab.plot(x_array, y_array, label='trajectory')
 
-  pylab.figure('time')
-  pylab.plot(time_array, x_array, label='x')
-  pylab.plot(time_array, y_array, label='y')
-  pylab.plot(time_array, theta_array, label = 'theta')
-  pylab.plot(time_array, e_array, label='e')
-  pylab.plot(time_array, phi_array, label='phi')
-  pylab.plot(time_array, alpha_array, label='alpha')
-  pylab.plot(time_array, cost_array, label='cost')
-  pylab.legend()
+    pylab.figure('time')
+    pylab.plot(time_array, x_array, label='x')
+    pylab.plot(time_array, y_array, label='y')
+    pylab.plot(time_array, theta_array, label='theta')
+    pylab.plot(time_array, e_array, label='e')
+    pylab.plot(time_array, phi_array, label='phi')
+    pylab.plot(time_array, alpha_array, label='alpha')
+    pylab.plot(time_array, cost_array, label='cost')
+    pylab.legend()
 
-  pylab.figure('u')
-  pylab.plot(time_array, u0_array, label='u0')
-  pylab.plot(time_array, u1_array, label='u1')
-  pylab.legend()
+    pylab.figure('u')
+    pylab.plot(time_array, u0_array, label='u0')
+    pylab.plot(time_array, u1_array, label='u1')
+    pylab.legend()
 
-  pylab.show()
+    pylab.show()