Run yapf on all python files in the repo

Signed-off-by: Ravago Jones <ravagojones@gmail.com>
Change-Id: I221e04c3f517fab8535b22551553799e0fee7a80
diff --git a/motors/python/haptic_phase_current.py b/motors/python/haptic_phase_current.py
index b17c514..fec909d 100755
--- a/motors/python/haptic_phase_current.py
+++ b/motors/python/haptic_phase_current.py
@@ -54,51 +54,62 @@
 #switching_pattern = 'centered front shifted'
 #switching_pattern = 'anticentered'
 
-Vconv = numpy.matrix([[2.0, -1.0, -1.0],
-                      [-1.0, 2.0, -1.0],
-                      [-1.0, -1.0, 2.0]]) / 3.0
+Vconv = numpy.matrix([[2.0, -1.0, -1.0], [-1.0, 2.0, -1.0], [-1.0, -1.0, 2.0]
+                      ]) / 3.0
+
 
 def f_single(theta):
-  return K1 * numpy.sin(theta) + K2 * numpy.sin(theta * 5)
+    return K1 * numpy.sin(theta) + K2 * numpy.sin(theta * 5)
+
 
 def g_single(theta):
-  return K1 * numpy.sin(theta) - K2 * numpy.sin(theta * 5)
+    return K1 * numpy.sin(theta) - K2 * numpy.sin(theta * 5)
+
 
 def gdot_single(theta):
-  """Derivitive of the current.
+    """Derivitive of the current.
 
   Must be multiplied by omega externally.
   """
-  return K1 * numpy.cos(theta) - 5.0 * K2 * numpy.cos(theta * 5.0)
+    return K1 * numpy.cos(theta) - 5.0 * K2 * numpy.cos(theta * 5.0)
 
-f = numpy.vectorize(f_single, otypes=(numpy.float,))
-g = numpy.vectorize(g_single, otypes=(numpy.float,))
-gdot = numpy.vectorize(gdot_single, otypes=(numpy.float,))
+
+f = numpy.vectorize(f_single, otypes=(numpy.float, ))
+g = numpy.vectorize(g_single, otypes=(numpy.float, ))
+gdot = numpy.vectorize(gdot_single, otypes=(numpy.float, ))
+
 
 def torque(theta):
-  return f(theta) * g(theta)
+    return f(theta) * g(theta)
+
 
 def phase_a(function, theta):
-  return function(theta)
+    return function(theta)
+
 
 def phase_b(function, theta):
-  return function(theta + 2 * numpy.pi / 3)
+    return function(theta + 2 * numpy.pi / 3)
+
 
 def phase_c(function, theta):
-  return function(theta + 4 * numpy.pi / 3)
+    return function(theta + 4 * numpy.pi / 3)
+
 
 def phases(function, theta):
-  return numpy.matrix([[phase_a(function, theta)],
-                       [phase_b(function, theta)],
-                       [phase_c(function, theta)]])
+    return numpy.matrix([[phase_a(function,
+                                  theta)], [phase_b(function, theta)],
+                         [phase_c(function, theta)]])
+
 
 def all_phases(function, theta_range):
-  return (phase_a(function, theta_range) +
-          phase_b(function, theta_range) +
-          phase_c(function, theta_range))
+    return (phase_a(function, theta_range) + phase_b(function, theta_range) +
+            phase_c(function, theta_range))
+
 
 theta_range = numpy.linspace(start=0, stop=4 * numpy.pi, num=10000)
-one_amp_driving_voltage = R * g(theta_range) + (L * gdot(theta_range) + M * gdot(theta_range + 2.0 / 3.0 * numpy.pi) + M * gdot(theta_range - 2.0 / 3.0 * numpy.pi)) * Kv * vcc / 2.0
+one_amp_driving_voltage = R * g(theta_range) + (
+    L * gdot(theta_range) + M * gdot(theta_range + 2.0 / 3.0 * numpy.pi) +
+    M * gdot(theta_range - 2.0 / 3.0 * numpy.pi)) * Kv * vcc / 2.0
 
 max_one_amp_driving_voltage = max(one_amp_driving_voltage)
 
@@ -108,7 +119,8 @@
 
 print 'Max BEMF', max(f(theta_range))
 print 'Max current', max(g(theta_range))
-print 'Max drive voltage (one_amp_driving_voltage)', max(one_amp_driving_voltage)
+print 'Max drive voltage (one_amp_driving_voltage)', max(
+    one_amp_driving_voltage)
 print 'one_amp_scalar', one_amp_scalar
 
 pylab.figure()
@@ -116,12 +128,14 @@
 pylab.plot(theta_range, f(theta_range), label='bemf')
 pylab.plot(theta_range, g(theta_range), label='phase_current')
 pylab.plot(theta_range, torque(theta_range), label='phase_torque')
-pylab.plot(theta_range, all_phases(torque, theta_range), label='sum_torque/current')
+pylab.plot(theta_range,
+           all_phases(torque, theta_range),
+           label='sum_torque/current')
 pylab.legend()
 
 
 def full_sample_times(Ton, Toff, dt, n, start_time):
-  """Returns n + 4 samples for the provided switching times.
+    """Returns n + 4 samples for the provided switching times.
 
   We need the timesteps and Us to integrate.
 
@@ -136,235 +150,260 @@
     array of [t, U matrix]
   """
 
-  assert((Toff <= 1.0).all())
-  assert((Ton <= 1.0).all())
-  assert((Toff >= 0.0).all())
-  assert((Ton >= 0.0).all())
+    assert ((Toff <= 1.0).all())
+    assert ((Ton <= 1.0).all())
+    assert ((Toff >= 0.0).all())
+    assert ((Ton >= 0.0).all())
 
-  if (Ton <= Toff).all():
-    on_before_off = True
-  else:
-    # Verify that they are all ordered correctly.
-    assert(not (Ton <= Toff).any())
-    on_before_off = False
-
-  Toff = Toff.copy() * dt
-  Toff[Toff < 100e-9] = -1.0
-  Toff[Toff > dt] = dt
-
-  Ton = Ton.copy() * dt
-  Ton[Ton < 100e-9] = -1.0
-  Ton[Ton > dt - 100e-9] = dt + 1.0
-
-  result = []
-  t = 0
-
-  result_times = numpy.concatenate(
-      (numpy.linspace(0, dt, num=n),
-       numpy.reshape(numpy.asarray(Ton[numpy.logical_and(Ton < dt, Ton > 0.0)]), (-1,)),
-       numpy.reshape(numpy.asarray(Toff[numpy.logical_and(Toff < dt, Toff > 0.0)]), (-1,))
-       ))
-  result_times.sort()
-  assert((result_times >= 0).all())
-  assert((result_times <= dt).all())
-
-  for t in result_times:
-    if on_before_off:
-      U = numpy.matrix([[vcc], [vcc], [vcc]])
-      U[t <= Ton] = 0.0
-      U[Toff < t] = 0.0
+    if (Ton <= Toff).all():
+        on_before_off = True
     else:
-      U = numpy.matrix([[0.0], [0.0], [0.0]])
-      U[t > Ton] = vcc
-      U[t <= Toff] = vcc
-    result.append((float(t + start_time), U.copy()))
+        # Verify that they are all ordered correctly.
+        assert (not (Ton <= Toff).any())
+        on_before_off = False
 
-  return result
+    Toff = Toff.copy() * dt
+    Toff[Toff < 100e-9] = -1.0
+    Toff[Toff > dt] = dt
+
+    Ton = Ton.copy() * dt
+    Ton[Ton < 100e-9] = -1.0
+    Ton[Ton > dt - 100e-9] = dt + 1.0
+
+    result = []
+    t = 0
+
+    result_times = numpy.concatenate(
+        (numpy.linspace(0, dt, num=n),
+         numpy.reshape(
+             numpy.asarray(Ton[numpy.logical_and(Ton < dt, Ton > 0.0)]),
+             (-1, )),
+         numpy.reshape(
+             numpy.asarray(Toff[numpy.logical_and(Toff < dt, Toff > 0.0)]),
+             (-1, ))))
+    result_times.sort()
+    assert ((result_times >= 0).all())
+    assert ((result_times <= dt).all())
+
+    for t in result_times:
+        if on_before_off:
+            U = numpy.matrix([[vcc], [vcc], [vcc]])
+            U[t <= Ton] = 0.0
+            U[Toff < t] = 0.0
+        else:
+            U = numpy.matrix([[0.0], [0.0], [0.0]])
+            U[t > Ton] = vcc
+            U[t <= Toff] = vcc
+        result.append((float(t + start_time), U.copy()))
+
+    return result
+
 
 def sample_times(T, dt, n, start_time):
-  if switching_pattern == 'rear':
-    T = 1.0 - T
-    ans = full_sample_times(T, numpy.matrix(numpy.ones((3, 1))) * 1.0, dt, n, start_time)
-  elif switching_pattern == 'centered front shifted':
-    # Centered, but shifted to the beginning of the cycle.
-    Ton = 0.5 - T / 2.0
-    Toff = 0.5 + T / 2.0
+    if switching_pattern == 'rear':
+        T = 1.0 - T
+        ans = full_sample_times(T,
+                                numpy.matrix(numpy.ones((3, 1))) * 1.0, dt, n,
+                                start_time)
+    elif switching_pattern == 'centered front shifted':
+        # Centered, but shifted to the beginning of the cycle.
+        Ton = 0.5 - T / 2.0
+        Toff = 0.5 + T / 2.0
 
-    tn = min(Ton)[0, 0]
-    Ton -= tn
-    Toff -= tn
+        tn = min(Ton)[0, 0]
+        Ton -= tn
+        Toff -= tn
 
-    ans = full_sample_times(Ton, Toff, dt, n, start_time)
-  elif switching_pattern == 'centered':
-    # Centered, looks waaay better.
-    Ton = 0.5 - T / 2.0
-    Toff = 0.5 + T / 2.0
+        ans = full_sample_times(Ton, Toff, dt, n, start_time)
+    elif switching_pattern == 'centered':
+        # Centered, looks waaay better.
+        Ton = 0.5 - T / 2.0
+        Toff = 0.5 + T / 2.0
 
-    ans = full_sample_times(Ton, Toff, dt, n, start_time)
-  elif switching_pattern == 'anticentered':
-    # Centered, looks waaay better.
-    Toff = T / 2.0
-    Ton = 1.0 - T / 2.0
+        ans = full_sample_times(Ton, Toff, dt, n, start_time)
+    elif switching_pattern == 'anticentered':
+        # Centered, looks waaay better.
+        Toff = T / 2.0
+        Ton = 1.0 - T / 2.0
 
-    ans = full_sample_times(Ton, Toff, dt, n, start_time)
-  elif switching_pattern == 'front':
-    ans = full_sample_times(numpy.matrix(numpy.zeros((3, 1))), T, dt, n, start_time)
-  else:
-    assert(False)
+        ans = full_sample_times(Ton, Toff, dt, n, start_time)
+    elif switching_pattern == 'front':
+        ans = full_sample_times(numpy.matrix(numpy.zeros((3, 1))), T, dt, n,
+                                start_time)
+    else:
+        assert (False)
 
-  return ans
+    return ans
+
 
 class DataLogger(object):
-  def __init__(self, title=None):
-    self.title = title
-    self.ia = []
-    self.ib = []
-    self.ic = []
-    self.ia_goal = []
-    self.ib_goal = []
-    self.ic_goal = []
-    self.ia_controls = []
-    self.ib_controls = []
-    self.ic_controls = []
-    self.isensea = []
-    self.isenseb = []
-    self.isensec = []
 
-    self.va = []
-    self.vb = []
-    self.vc = []
-    self.van = []
-    self.vbn = []
-    self.vcn = []
+    def __init__(self, title=None):
+        self.title = title
+        self.ia = []
+        self.ib = []
+        self.ic = []
+        self.ia_goal = []
+        self.ib_goal = []
+        self.ic_goal = []
+        self.ia_controls = []
+        self.ib_controls = []
+        self.ic_controls = []
+        self.isensea = []
+        self.isenseb = []
+        self.isensec = []
 
-    self.ea = []
-    self.eb = []
-    self.ec = []
+        self.va = []
+        self.vb = []
+        self.vc = []
+        self.van = []
+        self.vbn = []
+        self.vcn = []
 
-    self.theta = []
-    self.omega = []
+        self.ea = []
+        self.eb = []
+        self.ec = []
 
-    self.i_goal = []
+        self.theta = []
+        self.omega = []
 
-    self.time = []
-    self.controls_time = []
-    self.predicted_time = []
+        self.i_goal = []
 
-    self.ia_pred = []
-    self.ib_pred = []
-    self.ic_pred = []
+        self.time = []
+        self.controls_time = []
+        self.predicted_time = []
 
-    self.voltage_time = []
-    self.estimated_velocity = []
-    self.U_last = numpy.matrix(numpy.zeros((3, 1)))
+        self.ia_pred = []
+        self.ib_pred = []
+        self.ic_pred = []
 
-  def log_predicted(self, current_time, p):
-    self.predicted_time.append(current_time)
-    self.ia_pred.append(p[0, 0])
-    self.ib_pred.append(p[1, 0])
-    self.ic_pred.append(p[2, 0])
+        self.voltage_time = []
+        self.estimated_velocity = []
+        self.U_last = numpy.matrix(numpy.zeros((3, 1)))
 
-  def log_controls(self, current_time, measured_current, In, E, estimated_velocity):
-    self.controls_time.append(current_time)
-    self.ia_controls.append(measured_current[0, 0])
-    self.ib_controls.append(measured_current[1, 0])
-    self.ic_controls.append(measured_current[2, 0])
+    def log_predicted(self, current_time, p):
+        self.predicted_time.append(current_time)
+        self.ia_pred.append(p[0, 0])
+        self.ib_pred.append(p[1, 0])
+        self.ic_pred.append(p[2, 0])
 
-    self.ea.append(E[0, 0])
-    self.eb.append(E[1, 0])
-    self.ec.append(E[2, 0])
+    def log_controls(self, current_time, measured_current, In, E,
+                     estimated_velocity):
+        self.controls_time.append(current_time)
+        self.ia_controls.append(measured_current[0, 0])
+        self.ib_controls.append(measured_current[1, 0])
+        self.ic_controls.append(measured_current[2, 0])
 
-    self.ia_goal.append(In[0, 0])
-    self.ib_goal.append(In[1, 0])
-    self.ic_goal.append(In[2, 0])
-    self.estimated_velocity.append(estimated_velocity)
+        self.ea.append(E[0, 0])
+        self.eb.append(E[1, 0])
+        self.ec.append(E[2, 0])
 
-  def log_data(self, X, U, current_time, Vn, i_goal):
-    self.ia.append(X[0, 0])
-    self.ib.append(X[1, 0])
-    self.ic.append(X[2, 0])
+        self.ia_goal.append(In[0, 0])
+        self.ib_goal.append(In[1, 0])
+        self.ic_goal.append(In[2, 0])
+        self.estimated_velocity.append(estimated_velocity)
 
-    self.i_goal.append(i_goal)
+    def log_data(self, X, U, current_time, Vn, i_goal):
+        self.ia.append(X[0, 0])
+        self.ib.append(X[1, 0])
+        self.ic.append(X[2, 0])
 
-    self.isensea.append(X[5, 0])
-    self.isenseb.append(X[6, 0])
-    self.isensec.append(X[7, 0])
+        self.i_goal.append(i_goal)
 
-    self.theta.append(X[3, 0])
-    self.omega.append(X[4, 0])
+        self.isensea.append(X[5, 0])
+        self.isenseb.append(X[6, 0])
+        self.isensec.append(X[7, 0])
 
-    self.time.append(current_time)
+        self.theta.append(X[3, 0])
+        self.omega.append(X[4, 0])
 
-    self.van.append(Vn[0, 0])
-    self.vbn.append(Vn[1, 0])
-    self.vcn.append(Vn[2, 0])
+        self.time.append(current_time)
 
-    if (self.U_last != U).any():
-      self.va.append(self.U_last[0, 0])
-      self.vb.append(self.U_last[1, 0])
-      self.vc.append(self.U_last[2, 0])
-      self.voltage_time.append(current_time)
+        self.van.append(Vn[0, 0])
+        self.vbn.append(Vn[1, 0])
+        self.vcn.append(Vn[2, 0])
 
-      self.va.append(U[0, 0])
-      self.vb.append(U[1, 0])
-      self.vc.append(U[2, 0])
-      self.voltage_time.append(current_time)
-      self.U_last = U.copy()
+        if (self.U_last != U).any():
+            self.va.append(self.U_last[0, 0])
+            self.vb.append(self.U_last[1, 0])
+            self.vc.append(self.U_last[2, 0])
+            self.voltage_time.append(current_time)
 
-  def plot(self):
-    fig = pylab.figure()
-    pylab.subplot(3, 1, 1)
-    pylab.plot(self.controls_time, self.ia_controls, 'ro', label='ia_controls')
-    pylab.plot(self.controls_time, self.ib_controls, 'go', label='ib_controls')
-    pylab.plot(self.controls_time, self.ic_controls, 'bo', label='ic_controls')
-    pylab.plot(self.controls_time, self.ia_goal, 'r--', label='ia_goal')
-    pylab.plot(self.controls_time, self.ib_goal, 'g--', label='ib_goal')
-    pylab.plot(self.controls_time, self.ic_goal, 'b--', label='ic_goal')
+            self.va.append(U[0, 0])
+            self.vb.append(U[1, 0])
+            self.vc.append(U[2, 0])
+            self.voltage_time.append(current_time)
+            self.U_last = U.copy()
 
-    #pylab.plot(self.controls_time, self.ia_pred, 'r*', label='ia_pred')
-    #pylab.plot(self.controls_time, self.ib_pred, 'g*', label='ib_pred')
-    #pylab.plot(self.controls_time, self.ic_pred, 'b*', label='ic_pred')
-    pylab.plot(self.time, self.isensea, 'r:', label='ia_sense')
-    pylab.plot(self.time, self.isenseb, 'g:', label='ib_sense')
-    pylab.plot(self.time, self.isensec, 'b:', label='ic_sense')
-    pylab.plot(self.time, self.ia, 'r', label='ia')
-    pylab.plot(self.time, self.ib, 'g', label='ib')
-    pylab.plot(self.time, self.ic, 'b', label='ic')
-    pylab.plot(self.time, self.i_goal, label='i_goal')
-    if self.title is not None:
-      fig.canvas.set_window_title(self.title)
-    pylab.legend()
+    def plot(self):
+        fig = pylab.figure()
+        pylab.subplot(3, 1, 1)
+        pylab.plot(self.controls_time,
+                   self.ia_controls,
+                   'ro',
+                   label='ia_controls')
+        pylab.plot(self.controls_time,
+                   self.ib_controls,
+                   'go',
+                   label='ib_controls')
+        pylab.plot(self.controls_time,
+                   self.ic_controls,
+                   'bo',
+                   label='ic_controls')
+        pylab.plot(self.controls_time, self.ia_goal, 'r--', label='ia_goal')
+        pylab.plot(self.controls_time, self.ib_goal, 'g--', label='ib_goal')
+        pylab.plot(self.controls_time, self.ic_goal, 'b--', label='ic_goal')
 
-    pylab.subplot(3, 1, 2)
-    pylab.plot(self.voltage_time, self.va, label='va')
-    pylab.plot(self.voltage_time, self.vb, label='vb')
-    pylab.plot(self.voltage_time, self.vc, label='vc')
-    pylab.plot(self.time, self.van, label='van')
-    pylab.plot(self.time, self.vbn, label='vbn')
-    pylab.plot(self.time, self.vcn, label='vcn')
-    pylab.plot(self.controls_time, self.ea, label='ea')
-    pylab.plot(self.controls_time, self.eb, label='eb')
-    pylab.plot(self.controls_time, self.ec, label='ec')
-    pylab.legend()
+        #pylab.plot(self.controls_time, self.ia_pred, 'r*', label='ia_pred')
+        #pylab.plot(self.controls_time, self.ib_pred, 'g*', label='ib_pred')
+        #pylab.plot(self.controls_time, self.ic_pred, 'b*', label='ic_pred')
+        pylab.plot(self.time, self.isensea, 'r:', label='ia_sense')
+        pylab.plot(self.time, self.isenseb, 'g:', label='ib_sense')
+        pylab.plot(self.time, self.isensec, 'b:', label='ic_sense')
+        pylab.plot(self.time, self.ia, 'r', label='ia')
+        pylab.plot(self.time, self.ib, 'g', label='ib')
+        pylab.plot(self.time, self.ic, 'b', label='ic')
+        pylab.plot(self.time, self.i_goal, label='i_goal')
+        if self.title is not None:
+            fig.canvas.set_window_title(self.title)
+        pylab.legend()
 
-    pylab.subplot(3, 1, 3)
-    pylab.plot(self.time, self.theta, label='theta')
-    pylab.plot(self.time, self.omega, label='omega')
-    #pylab.plot(self.controls_time, self.estimated_velocity, label='estimated omega')
+        pylab.subplot(3, 1, 2)
+        pylab.plot(self.voltage_time, self.va, label='va')
+        pylab.plot(self.voltage_time, self.vb, label='vb')
+        pylab.plot(self.voltage_time, self.vc, label='vc')
+        pylab.plot(self.time, self.van, label='van')
+        pylab.plot(self.time, self.vbn, label='vbn')
+        pylab.plot(self.time, self.vcn, label='vcn')
+        pylab.plot(self.controls_time, self.ea, label='ea')
+        pylab.plot(self.controls_time, self.eb, label='eb')
+        pylab.plot(self.controls_time, self.ec, label='ec')
+        pylab.legend()
 
-    pylab.legend()
+        pylab.subplot(3, 1, 3)
+        pylab.plot(self.time, self.theta, label='theta')
+        pylab.plot(self.time, self.omega, label='omega')
+        #pylab.plot(self.controls_time, self.estimated_velocity, label='estimated omega')
 
-    fig = pylab.figure()
-    pylab.plot(self.controls_time,
-               map(operator.sub, self.ia_goal, self.ia_controls), 'r', label='ia_error')
-    pylab.plot(self.controls_time,
-               map(operator.sub, self.ib_goal, self.ib_controls), 'g', label='ib_error')
-    pylab.plot(self.controls_time,
-               map(operator.sub, self.ic_goal, self.ic_controls), 'b', label='ic_error')
-    if self.title is not None:
-      fig.canvas.set_window_title(self.title)
-    pylab.legend()
-    pylab.show()
+        pylab.legend()
+
+        fig = pylab.figure()
+        pylab.plot(self.controls_time,
+                   map(operator.sub, self.ia_goal, self.ia_controls),
+                   'r',
+                   label='ia_error')
+        pylab.plot(self.controls_time,
+                   map(operator.sub, self.ib_goal, self.ib_controls),
+                   'g',
+                   label='ib_error')
+        pylab.plot(self.controls_time,
+                   map(operator.sub, self.ic_goal, self.ic_controls),
+                   'b',
+                   label='ic_error')
+        if self.title is not None:
+            fig.canvas.set_window_title(self.title)
+        pylab.legend()
+        pylab.show()
 
 
 # So, from running a bunch of math, we know the following:
@@ -397,180 +436,203 @@
 # inv(L_matrix) * (Vconv * V - E - R_matrix * I) = I_dot
 # B * V - inv(L_matrix) * E - A * I = I_dot
 class Simulation(object):
-  def __init__(self):
-    self.R_matrix = numpy.matrix(numpy.eye(3)) * R
-    self.L_matrix = numpy.matrix([[L, M, M], [M, L, M], [M, M, L]])
-    self.L_matrix_inv = numpy.linalg.inv(self.L_matrix)
-    self.A = self.L_matrix_inv * self.R_matrix
-    self.B = self.L_matrix_inv * Vconv
-    self.A_discrete, self.B_discrete = controls.c2d(-self.A, self.B, 1.0 / hz)
-    self.B_discrete_inverse = numpy.matrix(numpy.eye(3)) / (self.B_discrete[0, 0] - self.B_discrete[1, 0])
 
-    self.R_model = R * 1.0
-    self.L_model = L * 1.0
-    self.M_model = M * 1.0
-    self.R_matrix_model = numpy.matrix(numpy.eye(3)) * self.R_model
-    self.L_matrix_model = numpy.matrix([[self.L_model, self.M_model, self.M_model],
-                                        [self.M_model, self.L_model, self.M_model],
-                                        [self.M_model, self.M_model, self.L_model]])
-    self.L_matrix_inv_model = numpy.linalg.inv(self.L_matrix_model)
-    self.A_model = self.L_matrix_inv_model * self.R_matrix_model
-    self.B_model = self.L_matrix_inv_model * Vconv
-    self.A_discrete_model, self.B_discrete_model = \
-        controls.c2d(-self.A_model, self.B_model, 1.0 / hz)
-    self.B_discrete_inverse_model = numpy.matrix(numpy.eye(3)) / (self.B_discrete_model[0, 0] - self.B_discrete_model[1, 0])
+    def __init__(self):
+        self.R_matrix = numpy.matrix(numpy.eye(3)) * R
+        self.L_matrix = numpy.matrix([[L, M, M], [M, L, M], [M, M, L]])
+        self.L_matrix_inv = numpy.linalg.inv(self.L_matrix)
+        self.A = self.L_matrix_inv * self.R_matrix
+        self.B = self.L_matrix_inv * Vconv
+        self.A_discrete, self.B_discrete = controls.c2d(
+            -self.A, self.B, 1.0 / hz)
+        self.B_discrete_inverse = numpy.matrix(
+            numpy.eye(3)) / (self.B_discrete[0, 0] - self.B_discrete[1, 0])
 
-    print 'constexpr double kL = %g;' % self.L_model
-    print 'constexpr double kM = %g;' % self.M_model
-    print 'constexpr double kR = %g;' % self.R_model
-    print 'constexpr float kAdiscrete_diagonal = %gf;' % self.A_discrete_model[0, 0]
-    print 'constexpr float kAdiscrete_offdiagonal = %gf;' % self.A_discrete_model[1, 0]
-    print 'constexpr float kBdiscrete_inv_diagonal = %gf;' % self.B_discrete_inverse_model[0, 0]
-    print 'constexpr float kBdiscrete_inv_offdiagonal = %gf;' % self.B_discrete_inverse_model[1, 0]
-    print 'constexpr double kOneAmpScalar = %g;' % one_amp_scalar
-    print 'constexpr double kMaxOneAmpDrivingVoltage = %g;' % max_one_amp_driving_voltage
-    print('A_discrete', self.A_discrete)
-    print('B_discrete', self.B_discrete)
-    print('B_discrete_sub', numpy.linalg.inv(self.B_discrete[0:2, 0:2]))
-    print('B_discrete_inv', self.B_discrete_inverse)
+        self.R_model = R * 1.0
+        self.L_model = L * 1.0
+        self.M_model = M * 1.0
+        self.R_matrix_model = numpy.matrix(numpy.eye(3)) * self.R_model
+        self.L_matrix_model = numpy.matrix(
+            [[self.L_model, self.M_model, self.M_model],
+             [self.M_model, self.L_model, self.M_model],
+             [self.M_model, self.M_model, self.L_model]])
+        self.L_matrix_inv_model = numpy.linalg.inv(self.L_matrix_model)
+        self.A_model = self.L_matrix_inv_model * self.R_matrix_model
+        self.B_model = self.L_matrix_inv_model * Vconv
+        self.A_discrete_model, self.B_discrete_model = \
+            controls.c2d(-self.A_model, self.B_model, 1.0 / hz)
+        self.B_discrete_inverse_model = numpy.matrix(numpy.eye(3)) / (
+            self.B_discrete_model[0, 0] - self.B_discrete_model[1, 0])
 
-    # Xdot[5:, :] = (R_sense2 + R_sense1) / R_sense2 * (
-    #      (1.0 / (R_sense1 * C_sense)) * (-Isense * R_sense2 / (R_sense1 + R_sense2) * (R_sense1 / R_sense2 + 1.0) + I))
-    self.mk1 = (R_sense2 + R_sense1) / R_sense2 * (1.0 / (R_sense1 * C_sense))
-    self.mk2 = -self.mk1 * R_sense2 / (R_sense1 + R_sense2) * (R_sense1 / R_sense2 + 1.0)
+        print 'constexpr double kL = %g;' % self.L_model
+        print 'constexpr double kM = %g;' % self.M_model
+        print 'constexpr double kR = %g;' % self.R_model
+        print 'constexpr float kAdiscrete_diagonal = %gf;' % self.A_discrete_model[
+            0, 0]
+        print 'constexpr float kAdiscrete_offdiagonal = %gf;' % self.A_discrete_model[
+            1, 0]
+        print 'constexpr float kBdiscrete_inv_diagonal = %gf;' % self.B_discrete_inverse_model[
+            0, 0]
+        print 'constexpr float kBdiscrete_inv_offdiagonal = %gf;' % self.B_discrete_inverse_model[
+            1, 0]
+        print 'constexpr double kOneAmpScalar = %g;' % one_amp_scalar
+        print 'constexpr double kMaxOneAmpDrivingVoltage = %g;' % max_one_amp_driving_voltage
+        print('A_discrete', self.A_discrete)
+        print('B_discrete', self.B_discrete)
+        print('B_discrete_sub', numpy.linalg.inv(self.B_discrete[0:2, 0:2]))
+        print('B_discrete_inv', self.B_discrete_inverse)
 
-    # ia, ib, ic, theta, omega, isensea, isenseb, isensec
-    self.X = numpy.matrix([[0.0], [0.0], [0.0], [-2.0 * numpy.pi / 3.0], [0.0], [0.0], [0.0], [0.0]])
+        # Xdot[5:, :] = (R_sense2 + R_sense1) / R_sense2 * (
+        #      (1.0 / (R_sense1 * C_sense)) * (-Isense * R_sense2 / (R_sense1 + R_sense2) * (R_sense1 / R_sense2 + 1.0) + I))
+        self.mk1 = (R_sense2 + R_sense1) / R_sense2 * (1.0 /
+                                                       (R_sense1 * C_sense))
+        self.mk2 = -self.mk1 * R_sense2 / (R_sense1 + R_sense2) * (
+            R_sense1 / R_sense2 + 1.0)
 
-    self.K = 0.05 * Vconv
-    print('A %s' % repr(self.A))
-    print('B %s' % repr(self.B))
-    print('K %s' % repr(self.K))
+        # ia, ib, ic, theta, omega, isensea, isenseb, isensec
+        self.X = numpy.matrix([[0.0], [0.0], [0.0], [-2.0 * numpy.pi / 3.0],
+                               [0.0], [0.0], [0.0], [0.0]])
 
-    print('System poles are %s' % repr(numpy.linalg.eig(self.A)[0]))
-    print('Poles are %s' % repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
+        self.K = 0.05 * Vconv
+        print('A %s' % repr(self.A))
+        print('B %s' % repr(self.B))
+        print('K %s' % repr(self.K))
 
-    controllability = controls.ctrb(self.A, self.B)
-    print('Rank of augmented controlability matrix. %d' % numpy.linalg.matrix_rank(
-          controllability))
+        print('System poles are %s' % repr(numpy.linalg.eig(self.A)[0]))
+        print('Poles are %s' %
+              repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
 
-    self.data_logger = DataLogger(switching_pattern)
-    self.current_time = 0.0
+        controllability = controls.ctrb(self.A, self.B)
+        print('Rank of augmented controlability matrix. %d' %
+              numpy.linalg.matrix_rank(controllability))
 
-    self.estimated_velocity = self.X[4, 0]
+        self.data_logger = DataLogger(switching_pattern)
+        self.current_time = 0.0
 
-  def motor_diffeq(self, x, t, U):
-    I = numpy.matrix(x[0:3]).T
-    theta = x[3]
-    omega = x[4]
-    Isense = numpy.matrix(x[5:]).T
+        self.estimated_velocity = self.X[4, 0]
 
-    dflux = phases(f_single, theta) / Kv
+    def motor_diffeq(self, x, t, U):
+        I = numpy.matrix(x[0:3]).T
+        theta = x[3]
+        omega = x[4]
+        Isense = numpy.matrix(x[5:]).T
 
-    Xdot = numpy.matrix(numpy.zeros((8, 1)))
-    di_dt = -self.A_model * I + self.B_model * U - self.L_matrix_inv_model * dflux * omega
-    torque = I.T * dflux
-    Xdot[0:3, :] = di_dt
-    Xdot[3, :] = omega
-    Xdot[4, :] = torque / J
+        dflux = phases(f_single, theta) / Kv
 
-    Xdot[5:, :] = self.mk1 * I + self.mk2 * Isense
-    return numpy.squeeze(numpy.asarray(Xdot))
+        Xdot = numpy.matrix(numpy.zeros((8, 1)))
+        di_dt = -self.A_model * I + self.B_model * U - self.L_matrix_inv_model * dflux * omega
+        torque = I.T * dflux
+        Xdot[0:3, :] = di_dt
+        Xdot[3, :] = omega
+        Xdot[4, :] = torque / J
 
-  def DoControls(self, goal_current):
-    theta = self.X[3, 0]
-    # Use the actual angular velocity.
-    omega = self.X[4, 0]
+        Xdot[5:, :] = self.mk1 * I + self.mk2 * Isense
+        return numpy.squeeze(numpy.asarray(Xdot))
 
-    measured_current = self.X[5:, :].copy()
+    def DoControls(self, goal_current):
+        theta = self.X[3, 0]
+        # Use the actual angular velocity.
+        omega = self.X[4, 0]
 
-    # Ok, lets now fake it.
-    E_imag1 = numpy.exp(1j * theta) * K1 * numpy.matrix(
-            [[-1j],
-             [-1j * numpy.exp(1j * numpy.pi * 2.0 / 3.0)],
+        measured_current = self.X[5:, :].copy()
+
+        # Ok, lets now fake it.
+        E_imag1 = numpy.exp(1j * theta) * K1 * numpy.matrix(
+            [[-1j], [-1j * numpy.exp(1j * numpy.pi * 2.0 / 3.0)],
              [-1j * numpy.exp(-1j * numpy.pi * 2.0 / 3.0)]])
-    E_imag2 =  numpy.exp(1j * 5.0 * theta) * K2 * numpy.matrix(
-            [[-1j],
-             [-1j * numpy.exp(-1j * numpy.pi * 2.0 / 3.0)],
+        E_imag2 = numpy.exp(1j * 5.0 * theta) * K2 * numpy.matrix(
+            [[-1j], [-1j * numpy.exp(-1j * numpy.pi * 2.0 / 3.0)],
              [-1j * numpy.exp(1j * numpy.pi * 2.0 / 3.0)]])
 
-    overall_measured_current = ((E_imag1 + E_imag2).real.T * measured_current / one_amp_scalar)[0, 0]
+        overall_measured_current = ((E_imag1 + E_imag2).real.T *
+                                    measured_current / one_amp_scalar)[0, 0]
 
-    current_error = goal_current - overall_measured_current
-    #print(current_error)
-    self.estimated_velocity += current_error * 1.0
-    omega = self.estimated_velocity
+        current_error = goal_current - overall_measured_current
+        #print(current_error)
+        self.estimated_velocity += current_error * 1.0
+        omega = self.estimated_velocity
 
-    # Now, apply the transfer function of the inductor.
-    # Use that to difference the current across the cycle.
-    Icurrent = self.Ilast
-    # No history:
-    #Icurrent = phases(g_single, theta) * goal_current
-    Inext = phases(g_single, theta + omega * 1.0 / hz) * goal_current
+        # Now, apply the transfer function of the inductor.
+        # Use that to difference the current across the cycle.
+        Icurrent = self.Ilast
+        # No history:
+        #Icurrent = phases(g_single, theta) * goal_current
+        Inext = phases(g_single, theta + omega * 1.0 / hz) * goal_current
 
-    deltaI = Inext - Icurrent
+        deltaI = Inext - Icurrent
 
-    H1 = -numpy.linalg.inv(1j * omega * self.L_matrix + self.R_matrix) * omega / Kv
-    H2 = -numpy.linalg.inv(1j * omega * 5.0 * self.L_matrix + self.R_matrix) * omega / Kv
-    p_imag = H1 * E_imag1 + H2 * E_imag2
-    p_next_imag = numpy.exp(1j * omega * 1.0 / hz) * H1 * E_imag1 + \
-        numpy.exp(1j * omega * 5.0 * 1.0 / hz) * H2 * E_imag2
-    p = p_imag.real
+        H1 = -numpy.linalg.inv(1j * omega * self.L_matrix +
+                               self.R_matrix) * omega / Kv
+        H2 = -numpy.linalg.inv(1j * omega * 5.0 * self.L_matrix +
+                               self.R_matrix) * omega / Kv
+        p_imag = H1 * E_imag1 + H2 * E_imag2
+        p_next_imag = numpy.exp(1j * omega * 1.0 / hz) * H1 * E_imag1 + \
+            numpy.exp(1j * omega * 5.0 * 1.0 / hz) * H2 * E_imag2
+        p = p_imag.real
 
-    # So, we now know how much the change in current is due to changes in BEMF.
-    # Subtract that, and then run the stock statespace equation.
-    Vn_ff = self.B_discrete_inverse * (Inext - self.A_discrete * (Icurrent - p) - p_next_imag.real)
-    print 'Vn_ff', Vn_ff
-    print 'Inext', Inext
-    Vn = Vn_ff + self.K * (Icurrent - measured_current)
+        # So, we now know how much the change in current is due to changes in BEMF.
+        # Subtract that, and then run the stock statespace equation.
+        Vn_ff = self.B_discrete_inverse * (Inext - self.A_discrete *
+                                           (Icurrent - p) - p_next_imag.real)
+        print 'Vn_ff', Vn_ff
+        print 'Inext', Inext
+        Vn = Vn_ff + self.K * (Icurrent - measured_current)
 
-    E = phases(f_single, self.X[3, 0]) / Kv * self.X[4, 0]
-    self.data_logger.log_controls(self.current_time, measured_current, Icurrent, E, self.estimated_velocity)
+        E = phases(f_single, self.X[3, 0]) / Kv * self.X[4, 0]
+        self.data_logger.log_controls(self.current_time, measured_current,
+                                      Icurrent, E, self.estimated_velocity)
 
-    self.Ilast = Inext
+        self.Ilast = Inext
 
-    return Vn
+        return Vn
 
-  def Simulate(self):
-    start_wall_time = time.time()
-    self.Ilast = numpy.matrix(numpy.zeros((3, 1)))
-    for n in range(200):
-      goal_current = 1.0
-      max_current = (vcc - (self.X[4, 0] / Kv * 2.0)) / max_one_amp_driving_voltage
-      min_current = (-vcc - (self.X[4, 0] / Kv * 2.0)) / max_one_amp_driving_voltage
-      goal_current = max(min_current, min(max_current, goal_current))
+    def Simulate(self):
+        start_wall_time = time.time()
+        self.Ilast = numpy.matrix(numpy.zeros((3, 1)))
+        for n in range(200):
+            goal_current = 1.0
+            max_current = (
+                vcc - (self.X[4, 0] / Kv * 2.0)) / max_one_amp_driving_voltage
+            min_current = (
+                -vcc - (self.X[4, 0] / Kv * 2.0)) / max_one_amp_driving_voltage
+            goal_current = max(min_current, min(max_current, goal_current))
 
-      Vn = self.DoControls(goal_current)
+            Vn = self.DoControls(goal_current)
 
-      #Vn = numpy.matrix([[1.00], [0.0], [0.0]])
-      Vn = numpy.matrix([[0.00], [1.00], [0.0]])
-      #Vn = numpy.matrix([[0.00], [0.0], [1.00]])
+            #Vn = numpy.matrix([[1.00], [0.0], [0.0]])
+            Vn = numpy.matrix([[0.00], [1.00], [0.0]])
+            #Vn = numpy.matrix([[0.00], [0.0], [1.00]])
 
-      # T is the fractional rate.
-      T = Vn / vcc
-      tn = -numpy.min(T)
-      T += tn
-      if (T > 1.0).any():
-        T = T / numpy.max(T)
+            # T is the fractional rate.
+            T = Vn / vcc
+            tn = -numpy.min(T)
+            T += tn
+            if (T > 1.0).any():
+                T = T / numpy.max(T)
 
-      for t, U in sample_times(T = T,
-                               dt = 1.0 / hz, n = 10,
-                               start_time = self.current_time):
-        # Analog amplifier mode!
-        #U = Vn
+            for t, U in sample_times(T=T,
+                                     dt=1.0 / hz,
+                                     n=10,
+                                     start_time=self.current_time):
+                # Analog amplifier mode!
+                #U = Vn
 
-        self.data_logger.log_data(self.X, (U - min(U)), self.current_time, Vn, goal_current)
-        t_array = numpy.array([self.current_time, t])
-        self.X = numpy.matrix(scipy.integrate.odeint(
-            self.motor_diffeq,
-            numpy.squeeze(numpy.asarray(self.X)),
-            t_array, args=(U,)))[1, :].T
+                self.data_logger.log_data(self.X, (U - min(U)),
+                                          self.current_time, Vn, goal_current)
+                t_array = numpy.array([self.current_time, t])
+                self.X = numpy.matrix(
+                    scipy.integrate.odeint(self.motor_diffeq,
+                                           numpy.squeeze(numpy.asarray(
+                                               self.X)),
+                                           t_array,
+                                           args=(U, )))[1, :].T
 
-        self.current_time = t
+                self.current_time = t
 
-    print 'Took %f to simulate' % (time.time() - start_wall_time)
+        print 'Took %f to simulate' % (time.time() - start_wall_time)
 
-    self.data_logger.plot()
+        self.data_logger.plot()
+
 
 simulation = Simulation()
 simulation.Simulate()