Renamed everything to claw.

- Renamed all the wrists calls to claw.
- Added a top and bottom wrist controller.
diff --git a/frc971/control_loops/python/claw.py b/frc971/control_loops/python/claw.py
new file mode 100755
index 0000000..3d6b9fc
--- /dev/null
+++ b/frc971/control_loops/python/claw.py
@@ -0,0 +1,170 @@
+#!/usr/bin/python
+
+import control_loop
+import numpy
+import sys
+from matplotlib import pylab
+
+class Claw(control_loop.ControlLoop):
+  def __init__(self, name="RawClaw"):
+    super(Claw, self).__init__(name)
+    # Stall Torque in N m
+    self.stall_torque = 1.4
+    # Stall Current in Amps
+    self.stall_current = 86
+    # Free Speed in RPM
+    self.free_speed = 6200.0
+    # Free Current in Amps
+    self.free_current = 1.5
+    # Moment of inertia of the claw in kg m^2
+    # TODO(aschuh): Measure this in reality.  It doesn't seem high enough.
+    # James measured 0.51, but that can't be right given what I am seeing.
+    self.J = 2.0
+    # Resistance of the motor
+    self.R = 12.0 / self.stall_current + 0.024 + .003
+    # Motor velocity constant
+    self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
+               (13.5 - self.R * self.free_current))
+    # Torque constant
+    self.Kt = self.stall_torque / self.stall_current
+    # Gear ratio
+    self.G = 1.0 / ((84.0 / 20.0) * (50.0 / 14.0) * (40.0 / 14.0) * (40.0 / 12.0))
+    # Control loop time step
+    self.dt = 0.01
+
+    # State feedback matrices
+    self.A_continuous = numpy.matrix(
+        [[0, 1],
+         [0, -self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
+    self.B_continuous = numpy.matrix(
+        [[0],
+         [self.Kt / (self.J * self.G * self.R)]])
+    self.C = numpy.matrix([[1, 0]])
+    self.D = numpy.matrix([[0]])
+
+    self.A, self.B = self.ContinuousToDiscrete(
+        self.A_continuous, self.B_continuous, self.dt)
+
+    self.PlaceControllerPoles([0.85, 0.45])
+
+    self.rpl = .05
+    self.ipl = 0.008
+    self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
+                             self.rpl - 1j * self.ipl])
+
+    self.U_max = numpy.matrix([[12.0]])
+    self.U_min = numpy.matrix([[-12.0]])
+
+    self.InitializeState()
+
+
+class ClawDeltaU(Claw):
+  def __init__(self, name="Claw"):
+    super(ClawDeltaU, self).__init__(name)
+    A_unaugmented = self.A
+    B_unaugmented = self.B
+
+    self.A = numpy.matrix([[0.0, 0.0, 0.0],
+                           [0.0, 0.0, 0.0],
+                           [0.0, 0.0, 1.0]])
+    self.A[0:2, 0:2] = A_unaugmented
+    self.A[0:2, 2] = B_unaugmented
+
+    self.B = numpy.matrix([[0.0],
+                           [0.0],
+                           [1.0]])
+
+    self.C = numpy.matrix([[1.0, 0.0, 0.0]])
+    self.D = numpy.matrix([[0.0]])
+
+    self.PlaceControllerPoles([0.55, 0.35, 0.80])
+
+    print "K"
+    print self.K
+    print "Placed controller poles are"
+    print numpy.linalg.eig(self.A - self.B * self.K)[0]
+
+    self.rpl = .05
+    self.ipl = 0.008
+    self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
+                             self.rpl - 1j * self.ipl, 0.90])
+    print "Placed observer poles are"
+    print numpy.linalg.eig(self.A - self.L * self.C)[0]
+
+    self.U_max = numpy.matrix([[12.0]])
+    self.U_min = numpy.matrix([[-12.0]])
+
+    self.InitializeState()
+
+
+def ClipDeltaU(claw, delta_u):
+  old_u = numpy.matrix([[claw.X[2, 0]]])
+  new_u = numpy.clip(old_u + delta_u, claw.U_min, claw.U_max)
+  return new_u - old_u
+
+def main(argv):
+  # Simulate the response of the system to a step input.
+  claw = ClawDeltaU()
+  simulated_x = []
+  for _ in xrange(100):
+    claw.Update(numpy.matrix([[12.0]]))
+    simulated_x.append(claw.X[0, 0])
+
+  pylab.plot(range(100), simulated_x)
+  pylab.show()
+
+  # Simulate the closed loop response of the system to a step input.
+  top_claw = ClawDeltaU("TopClaw")
+  close_loop_x = []
+  close_loop_u = []
+  R = numpy.matrix([[1.0], [0.0], [0.0]])
+  top_claw.X[2, 0] = -5
+  for _ in xrange(100):
+    U = numpy.clip(top_claw.K * (R - top_claw.X_hat), top_claw.U_min, top_claw.U_max)
+    U = ClipDeltaU(top_claw, U)
+    top_claw.UpdateObserver(U)
+    top_claw.Update(U)
+    close_loop_x.append(top_claw.X[0, 0] * 10)
+    close_loop_u.append(top_claw.X[2, 0])
+
+  pylab.plot(range(100), close_loop_x)
+  pylab.plot(range(100), close_loop_u)
+  pylab.show()
+
+  # Write the generated constants out to a file.
+  if len(argv) != 9:
+    print "Expected .h file name and .cc file name for"
+    print "both the plant and unaugmented plant"
+  else:
+    top_unaug_claw = Claw("RawTopClaw")
+    top_unaug_loop_writer = control_loop.ControlLoopWriter("RawTopClaw",
+                                                           [top_unaug_claw])
+    if argv[1][-3:] == '.cc':
+      top_unaug_loop_writer.Write(argv[2], argv[1])
+    else:
+      top_unaug_loop_writer.Write(argv[1], argv[2])
+
+    top_loop_writer = control_loop.ControlLoopWriter("TopClaw", [top_claw])
+    if argv[3][-3:] == '.cc':
+      top_loop_writer.Write(argv[4], argv[3])
+    else:
+      top_loop_writer.Write(argv[3], argv[4])
+
+    bottom_claw = ClawDeltaU("BottomClaw")
+    bottom_unaug_claw = Claw("RawBottomClaw")
+    bottom_unaug_loop_writer = control_loop.ControlLoopWriter(
+        "RawBottomClaw", [bottom_unaug_claw])
+    if argv[5][-3:] == '.cc':
+      bottom_unaug_loop_writer.Write(argv[6], argv[5])
+    else:
+      bottom_unaug_loop_writer.Write(argv[5], argv[6])
+
+    bottom_loop_writer = control_loop.ControlLoopWriter("BottomClaw",
+                                                        [bottom_claw])
+    if argv[7][-3:] == '.cc':
+      bottom_loop_writer.Write(argv[8], argv[7])
+    else:
+      bottom_loop_writer.Write(argv[7], argv[8])
+
+if __name__ == '__main__':
+  sys.exit(main(sys.argv))