Merge changes I1132152d,I2ee8fa9d,I9c11b56d,I04de0d01,If4fc6249

* changes:
  Make Aimer use correct turret zero convention
  Add basic shooting-on-the-fly implementation
  Handle turret wrapping more intelligently in Aimer
  Add targets for the turret aiming to shoot at
  Perform basic turret auto-aiming
diff --git a/frc971/constants.h b/frc971/constants.h
index debfb55..7c2121d 100644
--- a/frc971/constants.h
+++ b/frc971/constants.h
@@ -97,9 +97,9 @@
   double lower;
   double upper;
 
-  double middle() const { return (lower_hard + upper_hard) / 2.0; }
+  constexpr double middle() const { return (lower_hard + upper_hard) / 2.0; }
 
-  double range() const { return upper_hard - lower_hard; }
+  constexpr double range() const { return upper_hard - lower_hard; }
 };
 
 }  // namespace constants
diff --git a/frc971/control_loops/pose.h b/frc971/control_loops/pose.h
index 20672cf..ab8afd0 100644
--- a/frc971/control_loops/pose.h
+++ b/frc971/control_loops/pose.h
@@ -42,6 +42,8 @@
 // position of (10, -5, 0) and a yaw of pi / 2, that suggests the robot is
 // facing straight to the left from the driver's perspective and is placed 10m
 // from the driver's station wall and 5m to the right of the center of the wall.
+// For 2020, we move the origin to be the center of the field and make positive
+// x always point towards the red alliance driver stations.
 //
 // Furthermore, Poses can be chained such that a Pose can be placed relative to
 // another Pose; the other Pose can dynamically update, thus allowing us to,
@@ -134,7 +136,7 @@
   // If new_base == nullptr, provides a Pose referenced to the global frame.
   // Note that the lifetime of new_base should be greater than the lifetime of
   // the returned object (unless new_base == nullptr).
-  TypedPose Rebase(const TypedPose<Scalar> *new_base) const;
+  [[nodiscard]] TypedPose Rebase(const TypedPose<Scalar> *new_base) const;
 
   // Convert this pose to the heading/distance/skew numbers that we
   // traditionally use for EKF corrections.
diff --git a/y2020/control_loops/superstructure/BUILD b/y2020/control_loops/superstructure/BUILD
index d81b6b5..4534404 100644
--- a/y2020/control_loops/superstructure/BUILD
+++ b/y2020/control_loops/superstructure/BUILD
@@ -62,8 +62,11 @@
         ":superstructure_status_fbs",
         "//aos/controls:control_loop",
         "//aos/events:event_loop",
+        "//frc971/control_loops:control_loops_fbs",
+        "//frc971/control_loops/drivetrain:drivetrain_status_fbs",
         "//y2020:constants",
         "//y2020/control_loops/superstructure/shooter",
+        "//y2020/control_loops/superstructure/turret:aiming",
     ],
 )
 
diff --git a/y2020/control_loops/superstructure/superstructure.cc b/y2020/control_loops/superstructure/superstructure.cc
index 5dfd2d1..9ea9eb2 100644
--- a/y2020/control_loops/superstructure/superstructure.cc
+++ b/y2020/control_loops/superstructure/superstructure.cc
@@ -16,7 +16,11 @@
       hood_(constants::GetValues().hood),
       intake_joint_(constants::GetValues().intake),
       turret_(constants::GetValues().turret.subsystem_params),
-      shooter_() {
+      drivetrain_status_fetcher_(
+          event_loop->MakeFetcher<frc971::control_loops::drivetrain::Status>(
+              "/drivetrain")),
+      joystick_state_fetcher_(
+          event_loop->MakeFetcher<aos::JoystickState>("/aos")) {
   event_loop->SetRuntimeRealtimePriority(30);
 }
 
@@ -34,6 +38,22 @@
   const aos::monotonic_clock::time_point position_timestamp =
       event_loop()->context().monotonic_event_time;
 
+  if (drivetrain_status_fetcher_.Fetch()) {
+    aos::Alliance alliance = aos::Alliance::kInvalid;
+    if (joystick_state_fetcher_.Fetch()) {
+      alliance = joystick_state_fetcher_->alliance();
+    }
+    const turret::Aimer::WrapMode mode =
+        (unsafe_goal != nullptr && unsafe_goal->shooting())
+            ? turret::Aimer::WrapMode::kAvoidWrapping
+            : turret::Aimer::WrapMode::kAvoidEdges;
+    aimer_.Update(drivetrain_status_fetcher_.get(), alliance, mode,
+                  turret::Aimer::ShotMode::kShootOnTheFly);
+  }
+
+  const flatbuffers::Offset<AimerStatus> aimer_status_offset =
+      aimer_.PopulateStatus(status->fbb());
+
   OutputT output_struct;
 
   flatbuffers::Offset<AbsoluteEncoderProfiledJointStatus> hood_status_offset =
@@ -73,10 +93,14 @@
           output != nullptr ? &(output_struct.intake_joint_voltage) : nullptr,
           status->fbb());
 
+  const frc971::control_loops::StaticZeroingSingleDOFProfiledSubsystemGoal
+      *turret_goal = unsafe_goal != nullptr ? (unsafe_goal->turret_tracking()
+                                                   ? aimer_.TurretGoal()
+                                                   : unsafe_goal->turret())
+                                            : nullptr;
   flatbuffers::Offset<PotAndAbsoluteEncoderProfiledJointStatus>
       turret_status_offset = turret_.Iterate(
-          unsafe_goal != nullptr ? unsafe_goal->turret() : nullptr,
-          position->turret(),
+          turret_goal, position->turret(),
           output != nullptr ? &(output_struct.turret_voltage) : nullptr,
           status->fbb());
 
@@ -134,6 +158,7 @@
   status_builder.add_intake(intake_status_offset);
   status_builder.add_turret(turret_status_offset);
   status_builder.add_shooter(shooter_status_offset);
+  status_builder.add_aimer(aimer_status_offset);
 
   status->Send(status_builder.Finish());
 
diff --git a/y2020/control_loops/superstructure/superstructure.h b/y2020/control_loops/superstructure/superstructure.h
index 1526610..1a9d401 100644
--- a/y2020/control_loops/superstructure/superstructure.h
+++ b/y2020/control_loops/superstructure/superstructure.h
@@ -3,6 +3,8 @@
 
 #include "aos/controls/control_loop.h"
 #include "aos/events/event_loop.h"
+#include "aos/robot_state/joystick_state_generated.h"
+#include "frc971/control_loops/drivetrain/drivetrain_status_generated.h"
 #include "y2020/constants.h"
 #include "y2020/control_loops/superstructure/shooter/shooter.h"
 #include "y2020/control_loops/superstructure/superstructure_goal_generated.h"
@@ -10,6 +12,7 @@
 #include "y2020/control_loops/superstructure/superstructure_position_generated.h"
 #include "y2020/control_loops/superstructure/superstructure_status_generated.h"
 #include "y2020/control_loops/superstructure/climber.h"
+#include "y2020/control_loops/superstructure/turret/aiming.h"
 
 namespace y2020 {
 namespace control_loops {
@@ -53,6 +56,11 @@
   AbsoluteEncoderSubsystem intake_joint_;
   PotAndAbsoluteEncoderSubsystem turret_;
   shooter::Shooter shooter_;
+  turret::Aimer aimer_;
+
+  aos::Fetcher<frc971::control_loops::drivetrain::Status>
+      drivetrain_status_fetcher_;
+  aos::Fetcher<aos::JoystickState> joystick_state_fetcher_;
 
   Climber climber_;
 
diff --git a/y2020/control_loops/superstructure/superstructure_lib_test.cc b/y2020/control_loops/superstructure/superstructure_lib_test.cc
index 6e4e08b..b461ec6 100644
--- a/y2020/control_loops/superstructure/superstructure_lib_test.cc
+++ b/y2020/control_loops/superstructure/superstructure_lib_test.cc
@@ -36,6 +36,7 @@
     CreateStaticZeroingSingleDOFProfiledSubsystemGoal;
 using ::frc971::control_loops::PositionSensorSimulator;
 using ::frc971::control_loops::StaticZeroingSingleDOFProfiledSubsystemGoal;
+typedef ::frc971::control_loops::drivetrain::Status DrivetrainStatus;
 typedef Superstructure::AbsoluteEncoderSubsystem AbsoluteEncoderSubsystem;
 typedef Superstructure::PotAndAbsoluteEncoderSubsystem
     PotAndAbsoluteEncoderSubsystem;
@@ -72,7 +73,6 @@
             event_loop_->MakeFetcher<Status>("/superstructure")),
         superstructure_output_fetcher_(
             event_loop_->MakeFetcher<Output>("/superstructure")),
-
         hood_plant_(new CappedTestPlant(hood::MakeHoodPlant())),
         hood_encoder_(constants::GetValues()
                           .hood.zeroing_constants.one_revolution_distance),
@@ -398,6 +398,10 @@
             test_event_loop_->MakeFetcher<Output>("/superstructure")),
         superstructure_position_fetcher_(
             test_event_loop_->MakeFetcher<Position>("/superstructure")),
+        drivetrain_status_sender_(
+            test_event_loop_->MakeSender<DrivetrainStatus>("/drivetrain")),
+        joystick_state_sender_(
+            test_event_loop_->MakeSender<aos::JoystickState>("/aos")),
         superstructure_event_loop_(MakeEventLoop("superstructure", roborio_)),
         superstructure_(superstructure_event_loop_.get()),
         superstructure_plant_event_loop_(MakeEventLoop("plant", roborio_)),
@@ -506,6 +510,8 @@
   ::aos::Fetcher<Status> superstructure_status_fetcher_;
   ::aos::Fetcher<Output> superstructure_output_fetcher_;
   ::aos::Fetcher<Position> superstructure_position_fetcher_;
+  ::aos::Sender<DrivetrainStatus> drivetrain_status_sender_;
+  ::aos::Sender<aos::JoystickState> joystick_state_sender_;
 
   // Create a control loop and simulation.
   ::std::unique_ptr<::aos::EventLoop> superstructure_event_loop_;
@@ -827,6 +833,79 @@
   VerifyNearGoal();
 }
 
+class SuperstructureAllianceTest
+    : public SuperstructureTest,
+      public ::testing::WithParamInterface<aos::Alliance> {};
+
+// Tests that the turret switches to auto-aiming when we set turret_tracking to
+// true.
+TEST_P(SuperstructureAllianceTest, TurretAutoAim) {
+  SetEnabled(true);
+  // Set a reasonable goal.
+  const frc971::control_loops::Pose target = turret::OuterPortPose(GetParam());
+
+  WaitUntilZeroed();
+
+  constexpr double kShotAngle = 1.0;
+  {
+    auto builder = joystick_state_sender_.MakeBuilder();
+
+    aos::JoystickState::Builder joystick_builder =
+        builder.MakeBuilder<aos::JoystickState>();
+
+    joystick_builder.add_alliance(GetParam());
+
+    ASSERT_TRUE(builder.Send(joystick_builder.Finish()));
+  }
+  {
+    auto builder = superstructure_goal_sender_.MakeBuilder();
+
+    Goal::Builder goal_builder = builder.MakeBuilder<Goal>();
+
+    goal_builder.add_turret_tracking(true);
+
+    ASSERT_TRUE(builder.Send(goal_builder.Finish()));
+  }
+
+  {
+    auto builder = drivetrain_status_sender_.MakeBuilder();
+
+    frc971::control_loops::drivetrain::LocalizerState::Builder
+        localizer_builder = builder.MakeBuilder<
+            frc971::control_loops::drivetrain::LocalizerState>();
+    localizer_builder.add_left_velocity(0.0);
+    localizer_builder.add_right_velocity(0.0);
+    const auto localizer_offset = localizer_builder.Finish();
+
+    DrivetrainStatus::Builder status_builder =
+        builder.MakeBuilder<DrivetrainStatus>();
+
+    // Set the robot up at kShotAngle off from the target, 1m away.
+    status_builder.add_x(target.abs_pos().x() + std::cos(kShotAngle));
+    status_builder.add_y(target.abs_pos().y() + std::sin(kShotAngle));
+    status_builder.add_theta(0.0);
+    status_builder.add_localizer(localizer_offset);
+
+    ASSERT_TRUE(builder.Send(status_builder.Finish()));
+  }
+
+  // Give it time to stabilize.
+  RunFor(chrono::seconds(1));
+
+  superstructure_status_fetcher_.Fetch();
+  EXPECT_FLOAT_EQ(kShotAngle,
+                  superstructure_status_fetcher_->turret()->position());
+  EXPECT_FLOAT_EQ(kShotAngle,
+                  superstructure_status_fetcher_->aimer()->turret_position());
+  EXPECT_FLOAT_EQ(0,
+                  superstructure_status_fetcher_->aimer()->turret_velocity());
+}
+
+INSTANTIATE_TEST_CASE_P(ShootAnyAlliance, SuperstructureAllianceTest,
+                        ::testing::Values(aos::Alliance::kRed,
+                                          aos::Alliance::kBlue,
+                                          aos::Alliance::kInvalid));
+
 }  // namespace testing
 }  // namespace superstructure
 }  // namespace control_loops
diff --git a/y2020/control_loops/superstructure/superstructure_status.fbs b/y2020/control_loops/superstructure/superstructure_status.fbs
index 0b12d33..81293d3 100644
--- a/y2020/control_loops/superstructure/superstructure_status.fbs
+++ b/y2020/control_loops/superstructure/superstructure_status.fbs
@@ -29,6 +29,15 @@
   accelerator_right:FlywheelControllerStatus;
 }
 
+table AimerStatus {
+  // The current goal angle for the turret auto-tracking, in radians.
+  turret_position:double;
+  // The current goal velocity for the turret, in radians / sec.
+  turret_velocity:double;
+  // Whether we are currently aiming for the inner port.
+  aiming_for_inner_port:bool;
+}
+
 table Status {
   // All subsystems know their location.
   zeroed:bool;
@@ -46,6 +55,9 @@
 
   // Status of the control_panel
   control_panel:frc971.control_loops.RelativeEncoderProfiledJointStatus;
+
+  // Status of the vision auto-tracking.
+  aimer:AimerStatus;
 }
 
 root_type Status;
diff --git a/y2020/control_loops/superstructure/turret/BUILD b/y2020/control_loops/superstructure/turret/BUILD
index 894d418..010c6fd 100644
--- a/y2020/control_loops/superstructure/turret/BUILD
+++ b/y2020/control_loops/superstructure/turret/BUILD
@@ -30,3 +30,28 @@
         "//frc971/control_loops:state_feedback_loop",
     ],
 )
+
+cc_library(
+    name = "aiming",
+    srcs = ["aiming.cc"],
+    hdrs = ["aiming.h"],
+    deps = [
+        "//aos:flatbuffers",
+        "//frc971/control_loops:control_loops_fbs",
+        "//frc971/control_loops:pose",
+        "//frc971/control_loops:profiled_subsystem_fbs",
+        "//frc971/control_loops/drivetrain:drivetrain_status_fbs",
+        "//y2020:constants",
+        "//y2020/control_loops/drivetrain:drivetrain_base",
+        "//y2020/control_loops/superstructure:superstructure_status_fbs",
+    ],
+)
+
+cc_test(
+    name = "aiming_test",
+    srcs = ["aiming_test.cc"],
+    deps = [
+        ":aiming",
+        "//aos/testing:googletest",
+    ],
+)
diff --git a/y2020/control_loops/superstructure/turret/aiming.cc b/y2020/control_loops/superstructure/turret/aiming.cc
new file mode 100644
index 0000000..360fd1a
--- /dev/null
+++ b/y2020/control_loops/superstructure/turret/aiming.cc
@@ -0,0 +1,252 @@
+#include "y2020/control_loops/superstructure/turret/aiming.h"
+
+#include "y2020/constants.h"
+#include "y2020/control_loops/drivetrain/drivetrain_base.h"
+
+namespace y2020 {
+namespace control_loops {
+namespace superstructure {
+namespace turret {
+
+using frc971::control_loops::Pose;
+
+// Shooting-on-the-fly concept:
+// The current way that we manage shooting-on-the fly endeavors to be reasonably
+// simple, until we get a chance to see how the actual dynamics play out.
+// Essentially, we assume that the robot's velocity will represent a constant
+// offset to the ball's velocity over the entire trajectory to the goal and
+// then offset the target that we are pointing at based on that.
+// Let us assume that, if the robot shoots while not moving, regardless of shot
+// distance, the ball's average speed-over-ground to the target will be a
+// constant s_shot (this implies that if the robot is driving straight towards
+// the target, the actual ball speed-over-ground will be greater than s_shot).
+// We will define things in the robot's coordinate frame. We will be shooting
+// at a target that is at position (target_x, target_y) in the robot frame. The
+// robot is travelling at (v_robot_x, v_robot_y). In order to shoot the ball,
+// we need to generate some virtual target (virtual_x, virtual_y) that we will
+// shoot at as if we were standing still. The total time-of-flight to that
+// target will be t_shot = norm2(virtual_x, virtual_y) / s_shot.
+// we will have virtual_x + v_robot_x * t_shot = target_x, and the same
+// for y. This gives us three equations and three unknowns (virtual_x,
+// virtual_y, and t_shot), and given appropriate assumptions, can be solved
+// analytically. However, doing so is obnoxious and given appropriate functions
+// for t_shot may not be feasible. As such, instead of actually solving the
+// equation analytically, we will use an iterative solution where we maintain
+// a current virtual target estimate. We start with this estimate as if the
+// robot is stationary. We then use this estimate to calculate t_shot, and
+// calculate the next value for the virtual target.
+
+namespace {
+// The overall length and width of the field, in meters.
+constexpr double kFieldLength = 15.983;
+constexpr double kFieldWidth = 8.212;
+// Height of the center of the port(s) above the ground, in meters.
+constexpr double kPortHeight = 2.494;
+
+// Maximum shot angle at which we will attempt to make the shot into the inner
+// port, in radians. Zero would imply that we could only shoot if we were
+// exactly perpendicular to the target. Larger numbers allow us to aim at the
+// inner port more aggressively, at the risk of being more likely to miss the
+// outer port entirely.
+constexpr double kMaxInnerPortAngle = 20.0 * M_PI / 180.0;
+
+// Distance (in meters) from the edge of the field to the port.
+constexpr double kEdgeOfFieldToPort = 2.404;
+
+// The amount (in meters) that the inner port is set back from the outer port.
+constexpr double kInnerPortBackset = 0.743;
+
+// Average speed-over-ground of the ball on its way to the target. Our current
+// model assumes constant ball velocity regardless of shot distance.
+// TODO(james): Is this an appropriate model? For the outer port it should be
+// good enough that it doesn't really matter, but for the inner port it may be
+// more appropriate to do something more dynamic--however, it is not yet clear
+// how we would best estimate speed-over-ground given a hood angle + shooter
+// speed. Assuming a constant average speed over the course of the trajectory
+// should be reasonable, since all we are trying to do here is calculate an
+// overall time-of-flight (we don't actually care about the ball speed itself).
+constexpr double kBallSpeedOverGround = 15.0;  // m/s
+
+// Minimum distance that we must be from the inner port in order to attempt the
+// shot--this is to account for the fact that if we are too close to the target,
+// then we won't have a clear shot on the inner port.
+constexpr double kMinimumInnerPortShotDistance = 4.0;
+
+// Amount of buffer, in radians, to leave to help avoid wrapping. I.e., any time
+// that we are in kAvoidEdges mode, we will keep ourselves at least
+// kAntiWrapBuffer radians away from the hardstops.
+constexpr double kAntiWrapBuffer = 0.2;
+
+// If the turret is at zero, then it will be at this angle relative to pointed
+// straight forwards on the robot.
+constexpr double kTurretZeroOffset = M_PI;
+
+constexpr double kTurretRange = constants::Values::kTurretRange().range();
+static_assert((kTurretRange - 2.0 * kAntiWrapBuffer) > 2.0 * M_PI,
+              "kAntiWrap buffer should be small enough that we still have 360 "
+              "degrees of range.");
+
+Pose ReverseSideOfField(Pose target) {
+  *target.mutable_pos() *= -1;
+  target.set_theta(aos::math::NormalizeAngle(target.rel_theta() + M_PI));
+  return target;
+}
+
+flatbuffers::DetachedBuffer MakePrefilledGoal() {
+  flatbuffers::FlatBufferBuilder fbb;
+  fbb.ForceDefaults(true);
+  Aimer::Goal::Builder builder(fbb);
+  builder.add_unsafe_goal(0);
+  builder.add_goal_velocity(0);
+  builder.add_ignore_profile(true);
+  fbb.Finish(builder.Finish());
+  return fbb.Release();
+}
+
+// This implements the iteration in the described shooting-on-the-fly algorithm.
+// robot_pose: Current robot pose.
+// robot_velocity: Current robot velocity, in the absolute field frame.
+// target_pose: Absolute goal Pose.
+// current_virtual_pose: Current estimate of where we want to shoot at.
+Pose IterateVirtualGoal(const Pose &robot_pose,
+                        const Eigen::Vector3d &robot_velocity,
+                        const Pose &target_pose,
+                        const Pose &current_virtual_pose) {
+  const double air_time =
+      current_virtual_pose.Rebase(&robot_pose).xy_norm() / kBallSpeedOverGround;
+  const Eigen::Vector3d virtual_target =
+      target_pose.abs_pos() - air_time * robot_velocity;
+  return Pose(virtual_target, target_pose.abs_theta());
+}
+}  // namespace
+
+Pose InnerPortPose(aos::Alliance alliance) {
+  const Pose target({kFieldLength / 2 + kInnerPortBackset,
+                     -kFieldWidth / 2.0 + kEdgeOfFieldToPort, kPortHeight},
+                    0.0);
+  if (alliance == aos::Alliance::kRed) {
+    return ReverseSideOfField(target);
+  }
+  return target;
+}
+
+Pose OuterPortPose(aos::Alliance alliance) {
+  Pose target(
+      {kFieldLength / 2, -kFieldWidth / 2.0 + kEdgeOfFieldToPort, kPortHeight},
+      0.0);
+  if (alliance == aos::Alliance::kRed) {
+    return ReverseSideOfField(target);
+  }
+  return target;
+}
+
+Aimer::Aimer() : goal_(MakePrefilledGoal()) {}
+
+void Aimer::Update(const Status *status, aos::Alliance alliance,
+                   WrapMode wrap_mode, ShotMode shot_mode) {
+  const Pose robot_pose({status->x(), status->y(), 0}, status->theta());
+  const Pose inner_port = InnerPortPose(alliance);
+  const Pose outer_port = OuterPortPose(alliance);
+  const Pose robot_pose_from_inner_port = robot_pose.Rebase(&inner_port);
+
+  // TODO(james): This code should probably just be in the localizer and have
+  // xdot/ydot get populated in the status message directly... that way we don't
+  // keep duplicating this math.
+  // Also, this doesn't currently take into account the lateral velocity of the
+  // robot. All of this would be helped by just doing this work in the Localizer
+  // itself.
+  const Eigen::Vector2d linear_angular =
+      drivetrain::GetDrivetrainConfig().Tlr_to_la() *
+      Eigen::Vector2d(status->localizer()->left_velocity(),
+                      status->localizer()->right_velocity());
+  const double xdot = linear_angular(0) * std::cos(status->theta());
+  const double ydot = linear_angular(0) * std::sin(status->theta());
+
+  const double inner_port_angle = robot_pose_from_inner_port.heading();
+  const double inner_port_distance = robot_pose_from_inner_port.xy_norm();
+  aiming_for_inner_port_ =
+      (std::abs(inner_port_angle) < kMaxInnerPortAngle) &&
+      (inner_port_distance > kMinimumInnerPortShotDistance);
+
+  // This code manages compensating the goal turret heading for the robot's
+  // current velocity, to allow for shooting on-the-fly.
+  // This works by solving for the correct turret angle numerically, since while
+  // we technically could do it analytically, doing so would both make it hard
+  // to make small changes (since it would force us to redo the math) and be
+  // error-prone since it'd be easy to make typos or other minor math errors.
+  Pose virtual_goal;
+  {
+    const Pose goal = aiming_for_inner_port_ ? inner_port : outer_port;
+    virtual_goal = goal;
+    if (shot_mode == ShotMode::kShootOnTheFly) {
+      for (int ii = 0; ii < 3; ++ii) {
+        virtual_goal =
+            IterateVirtualGoal(robot_pose, {xdot, ydot, 0}, goal, virtual_goal);
+      }
+      VLOG(1) << "Shooting-on-the-fly target position: "
+              << virtual_goal.abs_pos().transpose();
+    }
+    virtual_goal = virtual_goal.Rebase(&robot_pose);
+  }
+
+  const double heading_to_goal = virtual_goal.heading();
+  CHECK(status->has_localizer());
+  distance_ = virtual_goal.xy_norm();
+
+  // The following code all works to calculate what the rate of turn of the
+  // turret should be. The code only accounts for the rate of turn if we are
+  // aiming at a static target, which should be close enough to correct that it
+  // doesn't matter that it fails to account for the
+  // shooting-on-the-fly compensation.
+  const double rel_x = virtual_goal.rel_pos().x();
+  const double rel_y = virtual_goal.rel_pos().y();
+  const double squared_norm = rel_x * rel_x + rel_y * rel_y;
+
+  // If squared_norm gets to be too close to zero, just zero out the relevant
+  // term to prevent NaNs. Note that this doesn't address the chattering that
+  // would likely occur if we were to get excessively close to the target.
+  // Note that x and y terms are swapped relative to what you would normally see
+  // in the derivative of atan because xdot and ydot are the derivatives of
+  // robot_pos and we are working with the atan of (target_pos - robot_pos).
+  const double atan_diff = (squared_norm < 1e-3)
+                               ? 0.0
+                               : (rel_y * xdot - rel_x * ydot) / squared_norm;
+  // heading = atan2(relative_y, relative_x) - robot_theta
+  // dheading / dt = (rel_x * rel_y' - rel_y * rel_x') / (rel_x^2 + rel_y^2) - dtheta / dt
+  const double dheading_dt = atan_diff - linear_angular(1);
+
+  double range = kTurretRange;
+  if (wrap_mode == WrapMode::kAvoidEdges) {
+    range -= 2.0 * kAntiWrapBuffer;
+  }
+  // Calculate a goal turret heading such that it is within +/- pi of the
+  // current position (i.e., a goal that would minimize the amount the turret
+  // would have to travel).
+  // We then check if this goal would bring us out of range of the valid angles,
+  // and if it would, we reset to be within +/- pi of zero.
+  double turret_heading =
+      goal_.message().unsafe_goal() +
+      aos::math::NormalizeAngle(heading_to_goal - kTurretZeroOffset -
+                                goal_.message().unsafe_goal());
+  if (std::abs(turret_heading - constants::Values::kTurretRange().middle()) >
+      range / 2.0) {
+    turret_heading = aos::math::NormalizeAngle(turret_heading);
+  }
+
+  goal_.mutable_message()->mutate_unsafe_goal(turret_heading);
+  goal_.mutable_message()->mutate_goal_velocity(dheading_dt);
+}
+
+flatbuffers::Offset<AimerStatus> Aimer::PopulateStatus(
+    flatbuffers::FlatBufferBuilder *fbb) const {
+  AimerStatus::Builder builder(*fbb);
+  builder.add_turret_position(goal_.message().unsafe_goal());
+  builder.add_turret_velocity(goal_.message().goal_velocity());
+  builder.add_aiming_for_inner_port(aiming_for_inner_port_);
+  return builder.Finish();
+}
+
+}  // namespace turret
+}  // namespace superstructure
+}  // namespace control_loops
+}  // namespace y2020
diff --git a/y2020/control_loops/superstructure/turret/aiming.h b/y2020/control_loops/superstructure/turret/aiming.h
new file mode 100644
index 0000000..3b3071e
--- /dev/null
+++ b/y2020/control_loops/superstructure/turret/aiming.h
@@ -0,0 +1,74 @@
+#ifndef y2020_CONTROL_LOOPS_SUPERSTRUCTURE_TURRET_AIMING_H_
+#define y2020_CONTROL_LOOPS_SUPERSTRUCTURE_TURRET_AIMING_H_
+
+#include "aos/flatbuffers.h"
+#include "aos/robot_state/joystick_state_generated.h"
+#include "frc971/control_loops/drivetrain/drivetrain_status_generated.h"
+#include "frc971/control_loops/pose.h"
+#include "frc971/control_loops/profiled_subsystem_generated.h"
+#include "y2020/control_loops/superstructure/superstructure_status_generated.h"
+
+namespace y2020 {
+namespace control_loops {
+namespace superstructure {
+namespace turret {
+
+// Returns the port that we want to score on given our current alliance. The yaw
+// of the port will be such that the positive x axis points out the back of the
+// target.
+frc971::control_loops::Pose InnerPortPose(aos::Alliance alliance);
+frc971::control_loops::Pose OuterPortPose(aos::Alliance alliance);
+
+// This class manages taking in drivetrain status messages and generating turret
+// goals so that it gets aimed at the goal.
+class Aimer {
+ public:
+  typedef frc971::control_loops::StaticZeroingSingleDOFProfiledSubsystemGoal
+      Goal;
+  typedef frc971::control_loops::drivetrain::Status Status;
+  // Mode to run the aimer in, to control how we manage wrapping the turret
+  // angle.
+  enum class WrapMode {
+    // Keep the turret as far away from the edges of the range of motion as
+    // reasonable, to minimize the odds that we will hit the hardstops once we
+    // start shooting.
+    kAvoidEdges,
+    // Do everything reasonable to avoid having to wrap the shooter--set this
+    // while shooting so that we don't randomly spin the shooter 360 while
+    // shooting.
+    kAvoidWrapping,
+  };
+
+  // Control modes for managing how we manage shooting on the fly.
+  enum class ShotMode {
+    // Don't do any shooting-on-the-fly compensation--just point straight at the
+    // target. Primarily used in tests.
+    kStatic,
+    // Do do shooting-on-the-fly compensation.
+    kShootOnTheFly,
+  };
+
+  Aimer();
+
+  void Update(const Status *status, aos::Alliance alliance, WrapMode wrap_mode,
+              ShotMode shot_mode);
+
+  const Goal *TurretGoal() const { return &goal_.message(); }
+
+  // Returns the distance to the goal, in meters.
+  double DistanceToGoal() const { return distance_; }
+
+  flatbuffers::Offset<AimerStatus> PopulateStatus(
+      flatbuffers::FlatBufferBuilder *fbb) const;
+
+ private:
+  aos::FlatbufferDetachedBuffer<Goal> goal_;
+  bool aiming_for_inner_port_ = false;
+  double distance_ = 0.0;
+};
+
+}  // namespace turret
+}  // namespace superstructure
+}  // namespace control_loops
+}  // namespace y2020
+#endif  // y2020_CONTROL_LOOPS_SUPERSTRUCTURE_TURRET_AIMING_H_
diff --git a/y2020/control_loops/superstructure/turret/aiming_test.cc b/y2020/control_loops/superstructure/turret/aiming_test.cc
new file mode 100644
index 0000000..cb95b56
--- /dev/null
+++ b/y2020/control_loops/superstructure/turret/aiming_test.cc
@@ -0,0 +1,249 @@
+#include "y2020/control_loops/superstructure/turret/aiming.h"
+
+#include "frc971/control_loops/pose.h"
+#include "gtest/gtest.h"
+#include "y2020/constants.h"
+#include "y2020/control_loops/drivetrain/drivetrain_base.h"
+
+namespace y2020 {
+namespace control_loops {
+namespace superstructure {
+namespace turret {
+namespace testing {
+
+using frc971::control_loops::Pose;
+
+class AimerTest : public ::testing::Test {
+ public:
+  typedef Aimer::Goal Goal;
+  typedef Aimer::Status Status;
+  struct StatusData {
+    double x;
+    double y;
+    double theta;
+    double linear;
+    double angular;
+  };
+  aos::FlatbufferDetachedBuffer<Status> MakeStatus(const StatusData &data) {
+    flatbuffers::FlatBufferBuilder fbb;
+    frc971::control_loops::drivetrain::LocalizerState::Builder state_builder(
+        fbb);
+    state_builder.add_left_velocity(
+        data.linear -
+        data.angular * drivetrain::GetDrivetrainConfig().robot_radius);
+    state_builder.add_right_velocity(
+        data.linear +
+        data.angular * drivetrain::GetDrivetrainConfig().robot_radius);
+    const auto state_offset = state_builder.Finish();
+    Status::Builder builder(fbb);
+    builder.add_x(data.x);
+    builder.add_y(data.y);
+    builder.add_theta(data.theta);
+    builder.add_localizer(state_offset);
+    fbb.Finish(builder.Finish());
+    return fbb.Release();
+  }
+
+  const Goal *Update(
+      const StatusData &data, aos::Alliance alliance = aos::Alliance::kBlue,
+      Aimer::WrapMode wrap_mode = Aimer::WrapMode::kAvoidEdges,
+      Aimer::ShotMode shot_mode = Aimer::ShotMode::kShootOnTheFly) {
+    const auto buffer = MakeStatus(data);
+    aimer_.Update(&buffer.message(), alliance, wrap_mode, shot_mode);
+    const Goal *goal = aimer_.TurretGoal();
+    EXPECT_TRUE(goal->ignore_profile());
+    return goal;
+  }
+
+ protected:
+  Aimer aimer_;
+};
+
+TEST_F(AimerTest, StandingStill) {
+  const Pose target = OuterPortPose(aos::Alliance::kBlue);
+  const Goal *goal = Update({.x = target.abs_pos().x() + 1.0,
+                             .y = target.abs_pos().y() + 0.0,
+                             .theta = 0.0,
+                             .linear = 0.0,
+                             .angular = 0.0});
+  EXPECT_EQ(0.0, goal->unsafe_goal());
+  EXPECT_EQ(0.0, goal->goal_velocity());
+  EXPECT_EQ(1.0, aimer_.DistanceToGoal());
+  goal = Update({.x = target.abs_pos().x() + 1.0,
+                 .y = target.abs_pos().y() + 0.0,
+                 .theta = 1.0,
+                 .linear = 0.0,
+                 .angular = 0.0});
+  EXPECT_EQ(-1.0, goal->unsafe_goal());
+  EXPECT_EQ(0.0, goal->goal_velocity());
+  goal = Update({.x = target.abs_pos().x() + 1.0,
+                 .y = target.abs_pos().y() + 0.0,
+                 .theta = -1.0,
+                 .linear = 0.0,
+                 .angular = 0.0});
+  EXPECT_EQ(1.0, aos::math::NormalizeAngle(goal->unsafe_goal()));
+  EXPECT_EQ(0.0, goal->goal_velocity());
+  EXPECT_EQ(1.0, aimer_.DistanceToGoal());
+  // Test that we handle the case that where we are right on top of the target.
+  goal = Update({.x = target.abs_pos().x() + 0.0,
+                 .y = target.abs_pos().y() + 0.0,
+                 .theta = 0.0,
+                 .linear = 0.0,
+                 .angular = 0.0});
+  EXPECT_EQ(M_PI, goal->unsafe_goal());
+  EXPECT_EQ(0.0, goal->goal_velocity());
+  EXPECT_EQ(0.0, aimer_.DistanceToGoal());
+}
+
+TEST_F(AimerTest, SpinningRobot) {
+  const Pose target = OuterPortPose(aos::Alliance::kBlue);
+  const Goal *goal = Update({.x = target.abs_pos().x() + 1.0,
+                             .y = target.abs_pos().y() + 0.0,
+                             .theta = 0.0,
+                             .linear = 0.0,
+                             .angular = 1.0});
+  EXPECT_EQ(0.0, goal->unsafe_goal());
+  EXPECT_FLOAT_EQ(-1.0, goal->goal_velocity());
+}
+
+// Tests that when we drive straight away from the target we don't have to spin
+// the turret.
+TEST_F(AimerTest, DrivingAwayFromTarget) {
+  const Pose target = OuterPortPose(aos::Alliance::kBlue);
+  // To keep the test simple, disable shooting on the fly so that the
+  // goal distance comes out in an easy to calculate number.
+  const Goal *goal = Update({.x = target.abs_pos().x() + 1.0,
+                             .y = target.abs_pos().y() + 0.0,
+                             .theta = 0.0,
+                             .linear = 1.0,
+                             .angular = 0.0},
+                            aos::Alliance::kBlue, Aimer::WrapMode::kAvoidEdges,
+                            Aimer::ShotMode::kStatic);
+  EXPECT_EQ(0.0, goal->unsafe_goal());
+  EXPECT_FLOAT_EQ(0.0, goal->goal_velocity());
+  EXPECT_EQ(1.0, aimer_.DistanceToGoal());
+  // Next, try with shooting-on-the-fly enabled--because we are driving straight
+  // towards the target, only the goal distance should be impacted.
+  goal = Update({.x = target.abs_pos().x() + 1.0,
+                 .y = target.abs_pos().y() + 0.0,
+                 .theta = 0.0,
+                 .linear = 1.0,
+                 .angular = 0.0},
+                aos::Alliance::kBlue, Aimer::WrapMode::kAvoidEdges,
+                Aimer::ShotMode::kShootOnTheFly);
+  EXPECT_EQ(0.0, goal->unsafe_goal());
+  EXPECT_FLOAT_EQ(0.0, goal->goal_velocity());
+  EXPECT_LT(1.0001, aimer_.DistanceToGoal());
+  EXPECT_GT(1.1, aimer_.DistanceToGoal());
+}
+
+// Tests that when we drive perpendicular to the target, we do have to spin.
+TEST_F(AimerTest, DrivingLateralToTarget) {
+  const Pose target = OuterPortPose(aos::Alliance::kBlue);
+  // To keep the test simple, disable shooting on the fly so that the
+  // goal_velocity comes out in an easy to calculate number.
+  const Goal *goal = Update({.x = target.abs_pos().x() + 0.0,
+                             .y = target.abs_pos().y() + 1.0,
+                             .theta = 0.0,
+                             .linear = 1.0,
+                             .angular = 0.0},
+                            aos::Alliance::kBlue, Aimer::WrapMode::kAvoidEdges,
+                            Aimer::ShotMode::kStatic);
+  EXPECT_EQ(M_PI_2, goal->unsafe_goal());
+  EXPECT_FLOAT_EQ(-1.0, goal->goal_velocity());
+  EXPECT_EQ(1.0, aimer_.DistanceToGoal());
+  // Next, test with shooting-on-the-fly enabled, The goal numbers should all be
+  // slightly offset due to the robot velocity.
+  goal = Update({.x = target.abs_pos().x() + 0.0,
+                 .y = target.abs_pos().y() + 1.0,
+                 .theta = 0.0,
+                 .linear = 1.0,
+                 .angular = 0.0},
+                aos::Alliance::kBlue, Aimer::WrapMode::kAvoidEdges,
+                Aimer::ShotMode::kShootOnTheFly);
+  // Confirm that the turret heading goal is less then -pi / 2, but not by too
+  // much.
+  EXPECT_GT(M_PI_2 - 0.001, goal->unsafe_goal());
+  EXPECT_LT(M_PI_2 - 0.1, goal->unsafe_goal());
+  // Similarly, the turret velocity goal should be a bit greater than -1.0,
+  // since the turret is no longer at exactly a right angle.
+  EXPECT_LT(-1.0, goal->goal_velocity());
+  EXPECT_GT(-0.95, goal->goal_velocity());
+  // And the distance to the goal should be a bit greater than 1.0.
+  EXPECT_LT(1.0001, aimer_.DistanceToGoal());
+  EXPECT_GT(1.1, aimer_.DistanceToGoal());
+}
+
+// Confirms that we will indeed shoot at the inner port when we have a good shot
+// angle on it.
+TEST_F(AimerTest, InnerPort) {
+  const Pose target = InnerPortPose(aos::Alliance::kRed);
+  const Goal *goal = Update({.x = target.abs_pos().x() + 1.0,
+                             .y = target.abs_pos().y() + 0.0,
+                             .theta = 0.0,
+                             .linear = 0.0,
+                             .angular = 0.0},
+                            aos::Alliance::kRed);
+  EXPECT_EQ(0.0, goal->unsafe_goal());
+  EXPECT_EQ(0.0, goal->goal_velocity());
+}
+
+// Confirms that when we move the turret heading so that it would be entirely
+// out of the normal range of motion that we send a valid (in-range) goal.
+TEST_F(AimerTest, WrapWhenOutOfRange) {
+  // Start ourselves needing a turret angle of M_PI.
+  const Pose target = OuterPortPose(aos::Alliance::kBlue);
+  StatusData status{.x = target.abs_pos().x() + 1.0,
+                    .y = target.abs_pos().y() + 0.0,
+                    .theta = 0.0,
+                    .linear = 0.0,
+                    .angular = 0.0};
+  const Goal *goal = Update(status);
+  EXPECT_EQ(0.0, goal->unsafe_goal());
+  EXPECT_EQ(0.0, goal->goal_velocity());
+  // Move the robot a small amount--we should go past pi and not wrap yet.
+  status.theta = -0.1;
+  goal = Update(status);
+  EXPECT_FLOAT_EQ(0.1, goal->unsafe_goal());
+  EXPECT_EQ(0.0, goal->goal_velocity());
+  // Move the robot so that, if we had no hard-stops, we would go past it.
+  status.theta = -2.0;
+  goal = Update(status);
+  EXPECT_FLOAT_EQ(2.0, goal->unsafe_goal());
+  EXPECT_EQ(0.0, goal->goal_velocity());
+}
+
+// Confirms that the avoid edges turret mode doesn't let us get all the way to
+// the turret hard-stops but that the avoid wrapping mode does.
+TEST_F(AimerTest, WrappingModes) {
+  // Start ourselves needing a turret angle of M_PI.
+  const Pose target = OuterPortPose(aos::Alliance::kBlue);
+  StatusData status{.x = target.abs_pos().x() - 1.0,
+                    .y = target.abs_pos().y() + 0.0,
+                    .theta = 0.0,
+                    .linear = 0.0,
+                    .angular = 0.0};
+  const Goal *goal =
+      Update(status, aos::Alliance::kBlue, Aimer::WrapMode::kAvoidWrapping);
+  EXPECT_EQ(M_PI, goal->unsafe_goal());
+  EXPECT_EQ(0.0, goal->goal_velocity());
+  constexpr double kUpperLimit = constants::Values::kTurretRange().upper;
+  // Move the robot to the upper limit with AvoidWrapping set--we should be at
+  // the upper limit and not wrapped.
+  status.theta = goal->unsafe_goal() - kUpperLimit;
+  goal = Update(status, aos::Alliance::kBlue, Aimer::WrapMode::kAvoidWrapping);
+  EXPECT_FLOAT_EQ(kUpperLimit, goal->unsafe_goal());
+  EXPECT_EQ(0.0, goal->goal_velocity());
+  // Enter kAvoidEdges mode--we should wrap around.
+  goal = Update(status, aos::Alliance::kBlue, Aimer::WrapMode::kAvoidEdges);
+  // confirm that this test is actually testing something...
+  ASSERT_NE(aos::math::NormalizeAngle(kUpperLimit), kUpperLimit);
+  EXPECT_FLOAT_EQ(aos::math::NormalizeAngle(kUpperLimit), goal->unsafe_goal());
+  EXPECT_EQ(0.0, goal->goal_velocity());
+}
+
+}  // namespace testing
+}  // namespace turret
+}  // namespace superstructure
+}  // namespace control_loops
+}  // namespace y2020