Moved Drivetrain from y2017 python to frc971

Change-Id: If931cf988d2615acc286d288fc0e5c9e7e3a5b90
diff --git a/y2017/control_loops/python/polydrivetrain.py b/y2017/control_loops/python/polydrivetrain.py
index d3a5683..701308e 100755
--- a/y2017/control_loops/python/polydrivetrain.py
+++ b/y2017/control_loops/python/polydrivetrain.py
@@ -1,13 +1,8 @@
 #!/usr/bin/python
 
-import numpy
 import sys
-from frc971.control_loops.python import polytope
 from y2017.control_loops.python import drivetrain
-from frc971.control_loops.python import control_loop
-from frc971.control_loops.python import controls
-from frc971.control_loops.python.cim import CIM
-from matplotlib import pylab
+from frc971.control_loops.python import polydrivetrain
 
 import gflags
 import glog
@@ -21,479 +16,14 @@
 except gflags.DuplicateFlagError:
   pass
 
-def CoerceGoal(region, K, w, R):
-  """Intersects a line with a region, and finds the closest point to R.
-
-  Finds a point that is closest to R inside the region, and on the line
-  defined by K X = w.  If it is not possible to find a point on the line,
-  finds a point that is inside the region and closest to the line.  This
-  function assumes that
-
-  Args:
-    region: HPolytope, the valid goal region.
-    K: numpy.matrix (2 x 1), the matrix for the equation [K1, K2] [x1; x2] = w
-    w: float, the offset in the equation above.
-    R: numpy.matrix (2 x 1), the point to be closest to.
-
-  Returns:
-    numpy.matrix (2 x 1), the point.
-  """
-  return DoCoerceGoal(region, K, w, R)[0]
-
-def DoCoerceGoal(region, K, w, R):
-  if region.IsInside(R):
-    return (R, True)
-
-  perpendicular_vector = K.T / numpy.linalg.norm(K)
-  parallel_vector = numpy.matrix([[perpendicular_vector[1, 0]],
-                                  [-perpendicular_vector[0, 0]]])
-
-  # We want to impose the constraint K * X = w on the polytope H * X <= k.
-  # We do this by breaking X up into parallel and perpendicular components to
-  # the half plane.  This gives us the following equation.
-  #
-  #  parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) = X
-  #
-  # Then, substitute this into the polytope.
-  #
-  #  H * (parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) <= k
-  #
-  # Substitute K * X = w
-  #
-  # H * parallel * (parallel.T \dot X) + H * perpendicular * w <= k
-  #
-  # Move all the knowns to the right side.
-  #
-  # H * parallel * ([parallel1 parallel2] * X) <= k - H * perpendicular * w
-  #
-  # Let t = parallel.T \dot X, the component parallel to the surface.
-  #
-  # H * parallel * t <= k - H * perpendicular * w
-  #
-  # This is a polytope which we can solve, and use to figure out the range of X
-  # that we care about!
-
-  t_poly = polytope.HPolytope(
-      region.H * parallel_vector,
-      region.k - region.H * perpendicular_vector * w)
-
-  vertices = t_poly.Vertices()
-
-  if vertices.shape[0]:
-    # The region exists!
-    # Find the closest vertex
-    min_distance = numpy.infty
-    closest_point = None
-    for vertex in vertices:
-      point = parallel_vector * vertex + perpendicular_vector * w
-      length = numpy.linalg.norm(R - point)
-      if length < min_distance:
-        min_distance = length
-        closest_point = point
-
-    return (closest_point, True)
-  else:
-    # Find the vertex of the space that is closest to the line.
-    region_vertices = region.Vertices()
-    min_distance = numpy.infty
-    closest_point = None
-    for vertex in region_vertices:
-      point = vertex.T
-      length = numpy.abs((perpendicular_vector.T * point)[0, 0])
-      if length < min_distance:
-        min_distance = length
-        closest_point = point
-
-    return (closest_point, False)
-
-
-class VelocityDrivetrainModel(control_loop.ControlLoop):
-  def __init__(self, left_low=True, right_low=True, name="VelocityDrivetrainModel"):
-    super(VelocityDrivetrainModel, self).__init__(name)
-    self._drivetrain = drivetrain.Drivetrain(left_low=left_low,
-                                             right_low=right_low)
-    self.dt = 0.00505
-    self.A_continuous = numpy.matrix(
-        [[self._drivetrain.A_continuous[1, 1], self._drivetrain.A_continuous[1, 3]],
-         [self._drivetrain.A_continuous[3, 1], self._drivetrain.A_continuous[3, 3]]])
-
-    self.B_continuous = numpy.matrix(
-        [[self._drivetrain.B_continuous[1, 0], self._drivetrain.B_continuous[1, 1]],
-         [self._drivetrain.B_continuous[3, 0], self._drivetrain.B_continuous[3, 1]]])
-    self.C = numpy.matrix(numpy.eye(2))
-    self.D = numpy.matrix(numpy.zeros((2, 2)))
-
-    self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
-                                               self.B_continuous, self.dt)
-
-    # FF * X = U (steady state)
-    self.FF = self.B.I * (numpy.eye(2) - self.A)
-
-    self.PlaceControllerPoles([0.90, 0.90])
-    self.PlaceObserverPoles([0.02, 0.02])
-
-    self.G_high = self._drivetrain.G_high
-    self.G_low = self._drivetrain.G_low
-    self.resistance = self._drivetrain.resistance
-    self.r = self._drivetrain.r
-    self.Kv = self._drivetrain.Kv
-    self.Kt = self._drivetrain.Kt
-
-    self.U_max = self._drivetrain.U_max
-    self.U_min = self._drivetrain.U_min
-
-
-class VelocityDrivetrain(object):
-  HIGH = 'high'
-  LOW = 'low'
-  SHIFTING_UP = 'up'
-  SHIFTING_DOWN = 'down'
-
-  def __init__(self):
-    self.drivetrain_low_low = VelocityDrivetrainModel(
-        left_low=True, right_low=True, name='VelocityDrivetrainLowLow')
-    self.drivetrain_low_high = VelocityDrivetrainModel(left_low=True, right_low=False, name='VelocityDrivetrainLowHigh')
-    self.drivetrain_high_low = VelocityDrivetrainModel(left_low=False, right_low=True, name = 'VelocityDrivetrainHighLow')
-    self.drivetrain_high_high = VelocityDrivetrainModel(left_low=False, right_low=False, name = 'VelocityDrivetrainHighHigh')
-
-    # X is [lvel, rvel]
-    self.X = numpy.matrix(
-        [[0.0],
-         [0.0]])
-
-    self.U_poly = polytope.HPolytope(
-        numpy.matrix([[1, 0],
-                      [-1, 0],
-                      [0, 1],
-                      [0, -1]]),
-        numpy.matrix([[12],
-                      [12],
-                      [12],
-                      [12]]))
-
-    self.U_max = numpy.matrix(
-        [[12.0],
-         [12.0]])
-    self.U_min = numpy.matrix(
-        [[-12.0000000000],
-         [-12.0000000000]])
-
-    self.dt = 0.00505
-
-    self.R = numpy.matrix(
-        [[0.0],
-         [0.0]])
-
-    self.U_ideal = numpy.matrix(
-        [[0.0],
-         [0.0]])
-
-    # ttrust is the comprimise between having full throttle negative inertia,
-    # and having no throttle negative inertia.  A value of 0 is full throttle
-    # inertia.  A value of 1 is no throttle negative inertia.
-    self.ttrust = 1.0
-
-    self.left_gear = VelocityDrivetrain.LOW
-    self.right_gear = VelocityDrivetrain.LOW
-    self.left_shifter_position = 0.0
-    self.right_shifter_position = 0.0
-    self.left_cim = CIM()
-    self.right_cim = CIM()
-
-  def IsInGear(self, gear):
-    return gear is VelocityDrivetrain.HIGH or gear is VelocityDrivetrain.LOW
-
-  def MotorRPM(self, shifter_position, velocity):
-    if shifter_position > 0.5:
-      return (velocity / self.CurrentDrivetrain().G_high /
-              self.CurrentDrivetrain().r)
-    else:
-      return (velocity / self.CurrentDrivetrain().G_low /
-              self.CurrentDrivetrain().r)
-
-  def CurrentDrivetrain(self):
-    if self.left_shifter_position > 0.5:
-      if self.right_shifter_position > 0.5:
-        return self.drivetrain_high_high
-      else:
-        return self.drivetrain_high_low
-    else:
-      if self.right_shifter_position > 0.5:
-        return self.drivetrain_low_high
-      else:
-        return self.drivetrain_low_low
-
-  def SimShifter(self, gear, shifter_position):
-    if gear is VelocityDrivetrain.HIGH or gear is VelocityDrivetrain.SHIFTING_UP:
-      shifter_position = min(shifter_position + 0.5, 1.0)
-    else:
-      shifter_position = max(shifter_position - 0.5, 0.0)
-
-    if shifter_position == 1.0:
-      gear = VelocityDrivetrain.HIGH
-    elif shifter_position == 0.0:
-      gear = VelocityDrivetrain.LOW
-
-    return gear, shifter_position
-
-  def ComputeGear(self, wheel_velocity, should_print=False, current_gear=False, gear_name=None):
-    high_omega = (wheel_velocity / self.CurrentDrivetrain().G_high /
-                  self.CurrentDrivetrain().r)
-    low_omega = (wheel_velocity / self.CurrentDrivetrain().G_low /
-                 self.CurrentDrivetrain().r)
-    #print gear_name, "Motor Energy Difference.", 0.5 * 0.000140032647 * (low_omega * low_omega - high_omega * high_omega), "joules"
-    high_torque = ((12.0 - high_omega / self.CurrentDrivetrain().Kv) *
-                   self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().resistance)
-    low_torque = ((12.0 - low_omega / self.CurrentDrivetrain().Kv) *
-                  self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().resistance)
-    high_power = high_torque * high_omega
-    low_power = low_torque * low_omega
-    #if should_print:
-    #  print gear_name, "High omega", high_omega, "Low omega", low_omega
-    #  print gear_name, "High torque", high_torque, "Low torque", low_torque
-    #  print gear_name, "High power", high_power, "Low power", low_power
-
-    # Shift algorithm improvements.
-    # TODO(aschuh):
-    # It takes time to shift.  Shifting down for 1 cycle doesn't make sense
-    # because you will end up slower than without shifting.  Figure out how
-    # to include that info.
-    # If the driver is still in high gear, but isn't asking for the extra power
-    # from low gear, don't shift until he asks for it.
-    goal_gear_is_high = high_power > low_power
-    #goal_gear_is_high = True
-
-    if not self.IsInGear(current_gear):
-      glog.debug('%s Not in gear.', gear_name)
-      return current_gear
-    else:
-      is_high = current_gear is VelocityDrivetrain.HIGH
-      if is_high != goal_gear_is_high:
-        if goal_gear_is_high:
-          glog.debug('%s Shifting up.', gear_name)
-          return VelocityDrivetrain.SHIFTING_UP
-        else:
-          glog.debug('%s Shifting down.', gear_name)
-          return VelocityDrivetrain.SHIFTING_DOWN
-      else:
-        return current_gear
-
-  def FilterVelocity(self, throttle):
-    # Invert the plant to figure out how the velocity filter would have to work
-    # out in order to filter out the forwards negative inertia.
-    # This math assumes that the left and right power and velocity are equal.
-
-    # The throttle filter should filter such that the motor in the highest gear
-    # should be controlling the time constant.
-    # Do this by finding the index of FF that has the lowest value, and computing
-    # the sums using that index.
-    FF_sum = self.CurrentDrivetrain().FF.sum(axis=1)
-    min_FF_sum_index = numpy.argmin(FF_sum)
-    min_FF_sum = FF_sum[min_FF_sum_index, 0]
-    min_K_sum = self.CurrentDrivetrain().K[min_FF_sum_index, :].sum()
-    # Compute the FF sum for high gear.
-    high_min_FF_sum = self.drivetrain_high_high.FF[0, :].sum()
-
-    # U = self.K[0, :].sum() * (R - x_avg) + self.FF[0, :].sum() * R
-    # throttle * 12.0 = (self.K[0, :].sum() + self.FF[0, :].sum()) * R
-    #                   - self.K[0, :].sum() * x_avg
-
-    # R = (throttle * 12.0 + self.K[0, :].sum() * x_avg) /
-    #     (self.K[0, :].sum() + self.FF[0, :].sum())
-
-    # U = (K + FF) * R - K * X
-    # (K + FF) ^-1 * (U + K * X) = R
-
-    # Scale throttle by min_FF_sum / high_min_FF_sum.  This will make low gear
-    # have the same velocity goal as high gear, and so that the robot will hold
-    # the same speed for the same throttle for all gears.
-    adjusted_ff_voltage = numpy.clip(throttle * 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0)
-    return ((adjusted_ff_voltage + self.ttrust * min_K_sum * (self.X[0, 0] + self.X[1, 0]) / 2.0)
-            / (self.ttrust * min_K_sum + min_FF_sum))
-
-  def Update(self, throttle, steering):
-    # Shift into the gear which sends the most power to the floor.
-    # This is the same as sending the most torque down to the floor at the
-    # wheel.
-
-    self.left_gear = self.right_gear = True
-    if True:
-      self.left_gear = self.ComputeGear(self.X[0, 0], should_print=True,
-                                        current_gear=self.left_gear,
-                                        gear_name="left")
-      self.right_gear = self.ComputeGear(self.X[1, 0], should_print=True,
-                                         current_gear=self.right_gear,
-                                         gear_name="right")
-      if self.IsInGear(self.left_gear):
-        self.left_cim.X[0, 0] = self.MotorRPM(self.left_shifter_position, self.X[0, 0])
-
-      if self.IsInGear(self.right_gear):
-        self.right_cim.X[0, 0] = self.MotorRPM(self.right_shifter_position, self.X[0, 0])
-
-    if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
-      # Filter the throttle to provide a nicer response.
-      fvel = self.FilterVelocity(throttle)
-
-      # Constant radius means that angualar_velocity / linear_velocity = constant.
-      # Compute the left and right velocities.
-      steering_velocity = numpy.abs(fvel) * steering
-      left_velocity = fvel - steering_velocity
-      right_velocity = fvel + steering_velocity
-
-      # Write this constraint in the form of K * R = w
-      # angular velocity / linear velocity = constant
-      # (left - right) / (left + right) = constant
-      # left - right = constant * left + constant * right
-
-      # (fvel - steering * numpy.abs(fvel) - fvel - steering * numpy.abs(fvel)) /
-      #  (fvel - steering * numpy.abs(fvel) + fvel + steering * numpy.abs(fvel)) =
-      #       constant
-      # (- 2 * steering * numpy.abs(fvel)) / (2 * fvel) = constant
-      # (-steering * sign(fvel)) = constant
-      # (-steering * sign(fvel)) * (left + right) = left - right
-      # (steering * sign(fvel) + 1) * left + (steering * sign(fvel) - 1) * right = 0
-
-      equality_k = numpy.matrix(
-          [[1 + steering * numpy.sign(fvel), -(1 - steering * numpy.sign(fvel))]])
-      equality_w = 0.0
-
-      self.R[0, 0] = left_velocity
-      self.R[1, 0] = right_velocity
-
-      # Construct a constraint on R by manipulating the constraint on U
-      # Start out with H * U <= k
-      # U = FF * R + K * (R - X)
-      # H * (FF * R + K * R - K * X) <= k
-      # H * (FF + K) * R <= k + H * K * X
-      R_poly = polytope.HPolytope(
-          self.U_poly.H * (self.CurrentDrivetrain().K + self.CurrentDrivetrain().FF),
-          self.U_poly.k + self.U_poly.H * self.CurrentDrivetrain().K * self.X)
-
-      # Limit R back inside the box.
-      self.boxed_R = CoerceGoal(R_poly, equality_k, equality_w, self.R)
-
-      FF_volts = self.CurrentDrivetrain().FF * self.boxed_R
-      self.U_ideal = self.CurrentDrivetrain().K * (self.boxed_R - self.X) + FF_volts
-    else:
-      glog.debug('Not all in gear')
-      if not self.IsInGear(self.left_gear) and not self.IsInGear(self.right_gear):
-        # TODO(austin): Use battery volts here.
-        R_left = self.MotorRPM(self.left_shifter_position, self.X[0, 0])
-        self.U_ideal[0, 0] = numpy.clip(
-            self.left_cim.K * (R_left - self.left_cim.X) + R_left / self.left_cim.Kv,
-            self.left_cim.U_min, self.left_cim.U_max)
-        self.left_cim.Update(self.U_ideal[0, 0])
-
-        R_right = self.MotorRPM(self.right_shifter_position, self.X[1, 0])
-        self.U_ideal[1, 0] = numpy.clip(
-            self.right_cim.K * (R_right - self.right_cim.X) + R_right / self.right_cim.Kv,
-            self.right_cim.U_min, self.right_cim.U_max)
-        self.right_cim.Update(self.U_ideal[1, 0])
-      else:
-        assert False
-
-    self.U = numpy.clip(self.U_ideal, self.U_min, self.U_max)
-
-    # TODO(austin): Model the robot as not accelerating when you shift...
-    # This hack only works when you shift at the same time.
-    if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
-      self.X = self.CurrentDrivetrain().A * self.X + self.CurrentDrivetrain().B * self.U
-
-    self.left_gear, self.left_shifter_position = self.SimShifter(
-        self.left_gear, self.left_shifter_position)
-    self.right_gear, self.right_shifter_position = self.SimShifter(
-        self.right_gear, self.right_shifter_position)
-
-    glog.debug('U is %s %s', str(self.U[0, 0]), str(self.U[1, 0]))
-    glog.debug('Left shifter %s %d Right shifter %s %d',
-               self.left_gear, self.left_shifter_position,
-               self.right_gear, self.right_shifter_position)
-
-
 def main(argv):
-  vdrivetrain = VelocityDrivetrain()
-
-  if not FLAGS.plot:
-    if len(argv) != 5:
-      glog.fatal('Expected .h file name and .cc file name')
-    else:
-      namespaces = ['y2017', 'control_loops', 'drivetrain']
-      dog_loop_writer = control_loop.ControlLoopWriter(
-          "VelocityDrivetrain", [vdrivetrain.drivetrain_low_low,
-                         vdrivetrain.drivetrain_low_high,
-                         vdrivetrain.drivetrain_high_low,
-                         vdrivetrain.drivetrain_high_high],
-                         namespaces=namespaces)
-
-      dog_loop_writer.Write(argv[1], argv[2])
-
-      cim_writer = control_loop.ControlLoopWriter("CIM", [CIM()])
-
-      cim_writer.Write(argv[3], argv[4])
-      return
-
-  vl_plot = []
-  vr_plot = []
-  ul_plot = []
-  ur_plot = []
-  radius_plot = []
-  t_plot = []
-  left_gear_plot = []
-  right_gear_plot = []
-  vdrivetrain.left_shifter_position = 0.0
-  vdrivetrain.right_shifter_position = 0.0
-  vdrivetrain.left_gear = VelocityDrivetrain.LOW
-  vdrivetrain.right_gear = VelocityDrivetrain.LOW
-
-  glog.debug('K is %s', str(vdrivetrain.CurrentDrivetrain().K))
-
-  if vdrivetrain.left_gear is VelocityDrivetrain.HIGH:
-    glog.debug('Left is high')
+  if FLAGS.plot:
+    polydrivetrain.PlotPolyDrivetrainMotions(drivetrain.kDrivetrain)
+  elif len(argv) != 5:
+    glog.fatal('Expected .h file name and .cc file name')
   else:
-    glog.debug('Left is low')
-  if vdrivetrain.right_gear is VelocityDrivetrain.HIGH:
-    glog.debug('Right is high')
-  else:
-    glog.debug('Right is low')
-
-  for t in numpy.arange(0, 1.7, vdrivetrain.dt):
-    if t < 0.5:
-      vdrivetrain.Update(throttle=0.00, steering=1.0)
-    elif t < 1.2:
-      vdrivetrain.Update(throttle=0.5, steering=1.0)
-    else:
-      vdrivetrain.Update(throttle=0.00, steering=1.0)
-    t_plot.append(t)
-    vl_plot.append(vdrivetrain.X[0, 0])
-    vr_plot.append(vdrivetrain.X[1, 0])
-    ul_plot.append(vdrivetrain.U[0, 0])
-    ur_plot.append(vdrivetrain.U[1, 0])
-    left_gear_plot.append((vdrivetrain.left_gear is VelocityDrivetrain.HIGH) * 2.0 - 10.0)
-    right_gear_plot.append((vdrivetrain.right_gear is VelocityDrivetrain.HIGH) * 2.0 - 10.0)
-
-    fwd_velocity = (vdrivetrain.X[1, 0] + vdrivetrain.X[0, 0]) / 2
-    turn_velocity = (vdrivetrain.X[1, 0] - vdrivetrain.X[0, 0])
-    if abs(fwd_velocity) < 0.0000001:
-      radius_plot.append(turn_velocity)
-    else:
-      radius_plot.append(turn_velocity / fwd_velocity)
-
-  # TODO(austin):
-  # Shifting compensation.
-
-  # Tighten the turn.
-  # Closed loop drive.
-
-  pylab.plot(t_plot, vl_plot, label='left velocity')
-  pylab.plot(t_plot, vr_plot, label='right velocity')
-  pylab.plot(t_plot, ul_plot, label='left voltage')
-  pylab.plot(t_plot, ur_plot, label='right voltage')
-  pylab.plot(t_plot, radius_plot, label='radius')
-  pylab.plot(t_plot, left_gear_plot, label='left gear high')
-  pylab.plot(t_plot, right_gear_plot, label='right gear high')
-  pylab.legend()
-  pylab.show()
-  return 0
+    polydrivetrain.WritePolyDrivetrain(argv[1:3], argv[3:5], 'y2017',
+                                       drivetrain.kDrivetrain)
 
 if __name__ == '__main__':
   argv = FLAGS(sys.argv)