Refactor angular_system out of 2016 intake

Change-Id: I82272ea74b375861f8472e735fd489b431614ebe
diff --git a/y2016/control_loops/python/intake.py b/y2016/control_loops/python/intake.py
index abb755c..ceb4170 100755
--- a/y2016/control_loops/python/intake.py
+++ b/y2016/control_loops/python/intake.py
@@ -2,6 +2,7 @@
 
 from aos.util.trapezoid_profile import TrapezoidProfile
 from frc971.control_loops.python import control_loop
+from frc971.control_loops.python import angular_system
 from frc971.control_loops.python import controls
 import numpy
 import sys
@@ -12,302 +13,41 @@
 FLAGS = gflags.FLAGS
 
 try:
-  gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+    gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
 except gflags.DuplicateFlagError:
-  pass
+    pass
 
-class Intake(control_loop.ControlLoop):
-  def __init__(self, name="Intake"):
-    super(Intake, self).__init__(name)
-    # TODO(constants): Update all of these & retune poles.
-    # Stall Torque in N m
-    self.stall_torque = 0.71
-    # Stall Current in Amps
-    self.stall_current = 134
-    # Free Speed in RPM
-    self.free_speed = 18730
-    # Free Current in Amps
-    self.free_current = 0.7
-
-    # Resistance of the motor
-    self.R = 12.0 / self.stall_current
-    # Motor velocity constant
-    self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
-               (12.0 - self.R * self.free_current))
-    # Torque constant
-    self.Kt = self.stall_torque / self.stall_current
-    # Gear ratio
-    self.G = (56.0 / 12.0) * (54.0 / 14.0) * (64.0 / 18.0) * (48.0 / 16.0)
-
-    # Moment of inertia, measured in CAD.
-    # Extra mass to compensate for friction is added on.
-    self.J = 0.34 + 0.40
-
-    # Control loop time step
-    self.dt = 0.005
-
-    # State is [position, velocity]
-    # Input is [Voltage]
-
-    C1 = self.G * self.G * self.Kt / (self.R  * self.J * self.Kv)
-    C2 = self.Kt * self.G / (self.J * self.R)
-
-    self.A_continuous = numpy.matrix(
-        [[0, 1],
-         [0, -C1]])
-
-    # Start with the unmodified input
-    self.B_continuous = numpy.matrix(
-        [[0],
-         [C2]])
-
-    self.C = numpy.matrix([[1, 0]])
-    self.D = numpy.matrix([[0]])
-
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
-
-    controllability = controls.ctrb(self.A, self.B)
-
-    glog.debug("Free speed is %f", self.free_speed * numpy.pi * 2.0 / 60.0 / self.G)
-
-    q_pos = 0.20
-    q_vel = 5.0
-    self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0],
-                           [0.0, (1.0 / (q_vel ** 2.0))]])
-
-    self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0))]])
-    self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
-
-    q_pos_ff = 0.005
-    q_vel_ff = 1.0
-    self.Qff = numpy.matrix([[(1.0 / (q_pos_ff ** 2.0)), 0.0],
-                             [0.0, (1.0 / (q_vel_ff ** 2.0))]])
-
-    self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
-
-    glog.debug('K %s', repr(self.K))
-    glog.debug('Poles are %s',
-              repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
-
-    self.rpl = 0.30
-    self.ipl = 0.10
-    self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
-                             self.rpl - 1j * self.ipl])
-
-    glog.debug('L is %s', repr(self.L))
-
-    q_pos = 0.10
-    q_vel = 1.65
-    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0],
-                           [0.0, (q_vel ** 2.0)]])
-
-    r_volts = 0.025
-    self.R = numpy.matrix([[(r_volts ** 2.0)]])
-
-    self.KalmanGain, self.Q_steady = controls.kalman(
-        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
-
-    glog.debug('Kal %s', repr(self.KalmanGain))
-    self.L = self.A * self.KalmanGain
-    glog.debug('KalL is %s', repr(self.L))
-
-    # The box formed by U_min and U_max must encompass all possible values,
-    # or else Austin's code gets angry.
-    self.U_max = numpy.matrix([[12.0]])
-    self.U_min = numpy.matrix([[-12.0]])
-
-    self.InitializeState()
-
-class IntegralIntake(Intake):
-  def __init__(self, name="IntegralIntake"):
-    super(IntegralIntake, self).__init__(name=name)
-
-    self.A_continuous_unaugmented = self.A_continuous
-    self.B_continuous_unaugmented = self.B_continuous
-
-    self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
-    self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
-    self.A_continuous[0:2, 2] = self.B_continuous_unaugmented
-
-    self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
-    self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
-
-    self.C_unaugmented = self.C
-    self.C = numpy.matrix(numpy.zeros((1, 3)))
-    self.C[0:1, 0:2] = self.C_unaugmented
-
-    self.A, self.B = self.ContinuousToDiscrete(
-        self.A_continuous, self.B_continuous, self.dt)
-
-    q_pos = 0.12
-    q_vel = 2.00
-    q_voltage = 4.0
-    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0],
-                           [0.0, (q_vel ** 2.0), 0.0],
-                           [0.0, 0.0, (q_voltage ** 2.0)]])
-
-    r_pos = 0.05
-    self.R = numpy.matrix([[(r_pos ** 2.0)]])
-
-    self.KalmanGain, self.Q_steady = controls.kalman(
-        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
-    self.L = self.A * self.KalmanGain
-
-    self.K_unaugmented = self.K
-    self.K = numpy.matrix(numpy.zeros((1, 3)))
-    self.K[0, 0:2] = self.K_unaugmented
-    self.K[0, 2] = 1
-
-    self.Kff = numpy.concatenate((self.Kff, numpy.matrix(numpy.zeros((1, 1)))), axis=1)
-
-    self.InitializeState()
-
-class ScenarioPlotter(object):
-  def __init__(self):
-    # Various lists for graphing things.
-    self.t = []
-    self.x = []
-    self.v = []
-    self.a = []
-    self.x_hat = []
-    self.u = []
-    self.offset = []
-
-  def run_test(self, intake, end_goal,
-             controller_intake,
-             observer_intake=None,
-             iterations=200):
-    """Runs the intake plant with an initial condition and goal.
-
-      Args:
-        intake: intake object to use.
-        end_goal: end_goal state.
-        controller_intake: Intake object to get K from, or None if we should
-            use intake.
-        observer_intake: Intake object to use for the observer, or None if we should
-            use the actual state.
-        iterations: Number of timesteps to run the model for.
-    """
-
-    if controller_intake is None:
-      controller_intake = intake
-
-    vbat = 12.0
-
-    if self.t:
-      initial_t = self.t[-1] + intake.dt
-    else:
-      initial_t = 0
-
-    goal = numpy.concatenate((intake.X, numpy.matrix(numpy.zeros((1, 1)))), axis=0)
-
-    profile = TrapezoidProfile(intake.dt)
-    profile.set_maximum_acceleration(70.0)
-    profile.set_maximum_velocity(10.0)
-    profile.SetGoal(goal[0, 0])
-
-    U_last = numpy.matrix(numpy.zeros((1, 1)))
-    for i in xrange(iterations):
-      observer_intake.Y = intake.Y
-      observer_intake.CorrectObserver(U_last)
-
-      self.offset.append(observer_intake.X_hat[2, 0])
-      self.x_hat.append(observer_intake.X_hat[0, 0])
-
-      next_goal = numpy.concatenate(
-          (profile.Update(end_goal[0, 0], end_goal[1, 0]),
-           numpy.matrix(numpy.zeros((1, 1)))),
-          axis=0)
-
-      ff_U = controller_intake.Kff * (next_goal - observer_intake.A * goal)
-
-      U_uncapped = controller_intake.K * (goal - observer_intake.X_hat) + ff_U
-      U = U_uncapped.copy()
-      U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
-      self.x.append(intake.X[0, 0])
-
-      if self.v:
-        last_v = self.v[-1]
-      else:
-        last_v = 0
-
-      self.v.append(intake.X[1, 0])
-      self.a.append((self.v[-1] - last_v) / intake.dt)
-
-      offset = 0.0
-      if i > 100:
-        offset = 2.0
-      intake.Update(U + offset)
-
-      observer_intake.PredictObserver(U)
-
-      self.t.append(initial_t + i * intake.dt)
-      self.u.append(U[0, 0])
-
-      ff_U -= U_uncapped - U
-      goal = controller_intake.A * goal + controller_intake.B * ff_U
-
-      if U[0, 0] != U_uncapped[0, 0]:
-        profile.MoveCurrentState(
-            numpy.matrix([[goal[0, 0]], [goal[1, 0]]]))
-
-    glog.debug('Time: %f', self.t[-1])
-    glog.debug('goal_error %s', repr(end_goal - goal))
-    glog.debug('error %s', repr(observer_intake.X_hat - end_goal))
-
-  def Plot(self):
-    pylab.subplot(3, 1, 1)
-    pylab.plot(self.t, self.x, label='x')
-    pylab.plot(self.t, self.x_hat, label='x_hat')
-    pylab.legend()
-
-    pylab.subplot(3, 1, 2)
-    pylab.plot(self.t, self.u, label='u')
-    pylab.plot(self.t, self.offset, label='voltage_offset')
-    pylab.legend()
-
-    pylab.subplot(3, 1, 3)
-    pylab.plot(self.t, self.a, label='a')
-    pylab.legend()
-
-    pylab.show()
+kIntake = angular_system.AngularSystemParams(
+    name='Intake',
+    motor=control_loop.Vex775Pro(),
+    # (1 / 35.0) * (20.0 / 40.0) -> 16 tooth sprocket on #25 chain
+    G=(12.0 / 56.0) * (14.0 / 54.0) * (18.0 / 64.0) * (16.0 / 48.0),
+    J=0.34 - 0.03757568,
+    q_pos=0.20,
+    q_vel=5.0,
+    kalman_q_pos=0.12,
+    kalman_q_vel=2.0,
+    kalman_q_voltage=4.0,
+    kalman_r_position=0.05)
 
 
 def main(argv):
-  argv = FLAGS(argv)
-  glog.init()
+    if FLAGS.plot:
+        R = numpy.matrix([[numpy.pi / 2.0], [0.0]])
+        angular_system.PlotMotion(kIntake, R)
 
-  scenario_plotter = ScenarioPlotter()
+    # Write the generated constants out to a file.
+    if len(argv) != 5:
+        glog.fatal(
+            'Expected .h file name and .cc file name for the intake and integral intake.'
+        )
+    else:
+        namespaces = ['y2016', 'control_loops', 'superstructure']
+        angular_system.WriteAngularSystem(kIntake, argv[1:3], argv[3:5],
+                                          namespaces)
 
-  intake = Intake()
-  intake_controller = IntegralIntake()
-  observer_intake = IntegralIntake()
-
-  # Test moving the intake with constant separation.
-  initial_X = numpy.matrix([[0.0], [0.0]])
-  R = numpy.matrix([[numpy.pi/2.0], [0.0], [0.0]])
-  scenario_plotter.run_test(intake, end_goal=R,
-                            controller_intake=intake_controller,
-                            observer_intake=observer_intake, iterations=200)
-
-  if FLAGS.plot:
-    scenario_plotter.Plot()
-
-  # Write the generated constants out to a file.
-  if len(argv) != 5:
-    glog.fatal('Expected .h file name and .cc file name for the intake and integral intake.')
-  else:
-    namespaces = ['y2016', 'control_loops', 'superstructure']
-    intake = Intake("Intake")
-    loop_writer = control_loop.ControlLoopWriter('Intake', [intake],
-                                                 namespaces=namespaces)
-    loop_writer.Write(argv[1], argv[2])
-
-    integral_intake = IntegralIntake("IntegralIntake")
-    integral_loop_writer = control_loop.ControlLoopWriter("IntegralIntake", [integral_intake],
-                                                          namespaces=namespaces)
-    integral_loop_writer.Write(argv[3], argv[4])
 
 if __name__ == '__main__':
-  sys.exit(main(sys.argv))
+    argv = FLAGS(sys.argv)
+    glog.init()
+    sys.exit(main(argv))