blob: 0dd3eb12648734bda381eba93849814c7b11d247 [file] [log] [blame]
#include "y2012/control_loops/drivetrain/ssdrivetrain.h"
#include "aos/common/controls/polytope.h"
#include "aos/common/commonmath.h"
#include "aos/common/logging/matrix_logging.h"
#include "frc971/control_loops/state_feedback_loop.h"
#include "frc971/control_loops/coerce_goal.h"
#include "y2012/control_loops/drivetrain/drivetrain.q.h"
#include "y2012/control_loops/drivetrain/drivetrain_dog_motor_plant.h"
namespace y2012 {
namespace control_loops {
namespace drivetrain {
using ::frc971::control_loops::DoCoerceGoal;
DrivetrainMotorsSS::LimitedDrivetrainLoop::LimitedDrivetrainLoop(
StateFeedbackLoop<4, 2, 2> &&loop)
: StateFeedbackLoop<4, 2, 2>(::std::move(loop)),
U_Poly_((Eigen::Matrix<double, 4, 2>() << 1, 0, -1, 0, 0, 1, 0, -1)
.finished(),
(Eigen::Matrix<double, 4, 1>() << 12.0, 12.0, 12.0, 12.0)
.finished()) {
::aos::controls::HPolytope<0>::Init();
T << 1, -1, 1, 1;
T_inverse = T.inverse();
}
void DrivetrainMotorsSS::LimitedDrivetrainLoop::CapU() {
const Eigen::Matrix<double, 4, 1> error = R() - X_hat();
if (::std::abs(U(0, 0)) > 12.0 || ::std::abs(U(1, 0)) > 12.0) {
mutable_U() =
U() * 12.0 / ::std::max(::std::abs(U(0, 0)), ::std::abs(U(1, 0)));
LOG_MATRIX(DEBUG, "U is now", U());
// TODO(Austin): Figure out why the polytope stuff wasn't working and
// remove this hack.
output_was_capped_ = true;
return;
LOG_MATRIX(DEBUG, "U at start", U());
LOG_MATRIX(DEBUG, "R at start", R());
LOG_MATRIX(DEBUG, "Xhat at start", X_hat());
Eigen::Matrix<double, 2, 2> position_K;
position_K << K(0, 0), K(0, 2), K(1, 0), K(1, 2);
Eigen::Matrix<double, 2, 2> velocity_K;
velocity_K << K(0, 1), K(0, 3), K(1, 1), K(1, 3);
Eigen::Matrix<double, 2, 1> position_error;
position_error << error(0, 0), error(2, 0);
const auto drive_error = T_inverse * position_error;
Eigen::Matrix<double, 2, 1> velocity_error;
velocity_error << error(1, 0), error(3, 0);
LOG_MATRIX(DEBUG, "error", error);
const auto &poly = U_Poly_;
const Eigen::Matrix<double, 4, 2> pos_poly_H = poly.H() * position_K * T;
const Eigen::Matrix<double, 4, 1> pos_poly_k =
poly.k() - poly.H() * velocity_K * velocity_error;
const ::aos::controls::HPolytope<2> pos_poly(pos_poly_H, pos_poly_k);
Eigen::Matrix<double, 2, 1> adjusted_pos_error;
{
const auto &P = drive_error;
Eigen::Matrix<double, 1, 2> L45;
L45 << ::aos::sign(P(1, 0)), -::aos::sign(P(0, 0));
const double w45 = 0;
Eigen::Matrix<double, 1, 2> LH;
if (::std::abs(P(0, 0)) > ::std::abs(P(1, 0))) {
LH << 0, 1;
} else {
LH << 1, 0;
}
const double wh = LH.dot(P);
Eigen::Matrix<double, 2, 2> standard;
standard << L45, LH;
Eigen::Matrix<double, 2, 1> W;
W << w45, wh;
const Eigen::Matrix<double, 2, 1> intersection = standard.inverse() * W;
bool is_inside_h;
const auto adjusted_pos_error_h =
DoCoerceGoal(pos_poly, LH, wh, drive_error, &is_inside_h);
const auto adjusted_pos_error_45 =
DoCoerceGoal(pos_poly, L45, w45, intersection, nullptr);
if (pos_poly.IsInside(intersection)) {
adjusted_pos_error = adjusted_pos_error_h;
} else {
if (is_inside_h) {
if (adjusted_pos_error_h.norm() > adjusted_pos_error_45.norm()) {
adjusted_pos_error = adjusted_pos_error_h;
} else {
adjusted_pos_error = adjusted_pos_error_45;
}
} else {
adjusted_pos_error = adjusted_pos_error_45;
}
}
}
LOG_MATRIX(DEBUG, "adjusted_pos_error", adjusted_pos_error);
mutable_U() =
velocity_K * velocity_error + position_K * T * adjusted_pos_error;
LOG_MATRIX(DEBUG, "U is now", U());
} else {
output_was_capped_ = false;
}
}
DrivetrainMotorsSS::DrivetrainMotorsSS()
: loop_(new LimitedDrivetrainLoop(
::y2012::control_loops::drivetrain::MakeDrivetrainLoop())),
filtered_offset_(0.0),
gyro_(0.0),
left_goal_(0.0),
right_goal_(0.0),
raw_left_(0.0),
raw_right_(0.0) {
// High gear on both.
loop_->set_controller_index(3);
}
void DrivetrainMotorsSS::SetGoal(double left, double left_velocity,
double right, double right_velocity) {
left_goal_ = left;
right_goal_ = right;
loop_->mutable_R() << left, left_velocity, right, right_velocity;
}
void DrivetrainMotorsSS::SetRawPosition(double left, double right) {
raw_right_ = right;
raw_left_ = left;
Eigen::Matrix<double, 2, 1> Y;
Y << left + filtered_offset_, right - filtered_offset_;
loop_->Correct(Y);
}
void DrivetrainMotorsSS::SetPosition(double left, double right, double gyro) {
// Decay the offset quickly because this gyro is great.
const double offset =
(right - left - gyro * 0.5) / 2.0;
filtered_offset_ = 0.25 * offset + 0.75 * filtered_offset_;
gyro_ = gyro;
SetRawPosition(left, right);
}
void DrivetrainMotorsSS::SetExternalMotors(double left_voltage,
double right_voltage) {
loop_->mutable_U() << left_voltage, right_voltage;
}
void DrivetrainMotorsSS::Update(bool stop_motors, bool enable_control_loop) {
if (enable_control_loop) {
loop_->Update(stop_motors);
} else {
if (stop_motors) {
loop_->mutable_U().setZero();
loop_->mutable_U_uncapped().setZero();
}
loop_->UpdateObserver(loop_->U());
}
::Eigen::Matrix<double, 4, 1> E = loop_->R() - loop_->X_hat();
LOG_MATRIX(DEBUG, "E", E);
}
double DrivetrainMotorsSS::GetEstimatedRobotSpeed() const {
// lets just call the average of left and right velocities close enough
return (loop_->X_hat(1, 0) + loop_->X_hat(3, 0)) / 2;
}
void DrivetrainMotorsSS::SendMotors(
::y2012::control_loops::DrivetrainQueue::Output *output) const {
if (output) {
output->left_voltage = loop_->U(0, 0);
output->right_voltage = loop_->U(1, 0);
output->left_high = true;
output->right_high = true;
}
}
} // namespace drivetrain
} // namespace control_loops
} // namespace y2012