blob: 598d635098015859e9773b81d17433f187b1349d [file] [log] [blame]
#include "y2012/control_loops/drivetrain/polydrivetrain.h"
#include "aos/common/logging/logging.h"
#include "aos/common/controls/polytope.h"
#include "aos/common/commonmath.h"
#include "aos/common/logging/queue_logging.h"
#include "aos/common/logging/matrix_logging.h"
#include "aos/common/messages/robot_state.q.h"
#include "frc971/control_loops/state_feedback_loop.h"
#include "frc971/control_loops/coerce_goal.h"
#include "y2012/control_loops/drivetrain/drivetrain.q.h"
#include "y2012/control_loops/drivetrain/drivetrain_dog_motor_plant.h"
#include "y2012/control_loops/drivetrain/polydrivetrain_dog_motor_plant.h"
#define HAVE_SHIFTERS 1
namespace y2012 {
namespace control_loops {
namespace drivetrain {
using ::y2012::control_loops::GearLogging;
using ::y2012::control_loops::CIMLogging;
using ::frc971::control_loops::CoerceGoal;
PolyDrivetrain::PolyDrivetrain()
: U_Poly_((Eigen::Matrix<double, 4, 2>() << /*[[*/ 1, 0 /*]*/,
/*[*/ -1, 0 /*]*/,
/*[*/ 0, 1 /*]*/,
/*[*/ 0, -1 /*]]*/).finished(),
(Eigen::Matrix<double, 4, 1>() << /*[[*/ 12 /*]*/,
/*[*/ 12 /*]*/,
/*[*/ 12 /*]*/,
/*[*/ 12 /*]]*/).finished()),
loop_(new StateFeedbackLoop<2, 2, 2>(
::y2012::control_loops::drivetrain::MakeVelocityDrivetrainLoop())),
ttrust_(1.1),
wheel_(0.0),
throttle_(0.0),
quickturn_(false),
stale_count_(0),
position_time_delta_(kDt),
left_gear_(LOW),
right_gear_(LOW),
counter_(0) {
last_position_.Zero();
position_.Zero();
}
double PolyDrivetrain::MotorSpeed(bool high_gear, double velocity) {
if (high_gear) {
return velocity / kHighGearRatio / kWheelRadius;
} else {
return velocity / kLowGearRatio / kWheelRadius;
}
}
void PolyDrivetrain::SetGoal(double wheel, double throttle, bool quickturn,
bool highgear) {
const double kWheelNonLinearity = 0.3;
// Apply a sin function that's scaled to make it feel better.
const double angular_range = M_PI_2 * kWheelNonLinearity;
wheel_ = sin(angular_range * wheel) / sin(angular_range);
wheel_ = sin(angular_range * wheel_) / sin(angular_range);
quickturn_ = quickturn;
static const double kThrottleDeadband = 0.05;
if (::std::abs(throttle) < kThrottleDeadband) {
throttle_ = 0;
} else {
throttle_ = copysign(
(::std::abs(throttle) - kThrottleDeadband) / (1.0 - kThrottleDeadband),
throttle);
}
// TODO(austin): Fix the upshift logic to include states.
Gear requested_gear = highgear ? HIGH : LOW;
const Gear shift_up = HIGH;
const Gear shift_down = LOW;
if (left_gear_ != requested_gear) {
if (IsInGear(left_gear_)) {
if (requested_gear == HIGH) {
left_gear_ = shift_up;
} else {
left_gear_ = shift_down;
}
} else {
if (requested_gear == HIGH && left_gear_ == SHIFTING_DOWN) {
left_gear_ = SHIFTING_UP;
} else if (requested_gear == LOW && left_gear_ == SHIFTING_UP) {
left_gear_ = SHIFTING_DOWN;
}
}
}
if (right_gear_ != requested_gear) {
if (IsInGear(right_gear_)) {
if (requested_gear == HIGH) {
right_gear_ = shift_up;
} else {
right_gear_ = shift_down;
}
} else {
if (requested_gear == HIGH && right_gear_ == SHIFTING_DOWN) {
right_gear_ = SHIFTING_UP;
} else if (requested_gear == LOW && right_gear_ == SHIFTING_UP) {
right_gear_ = SHIFTING_DOWN;
}
}
}
}
void PolyDrivetrain::SetPosition(
const ::y2012::control_loops::DrivetrainQueue::Position *position) {
if (position == NULL) {
++stale_count_;
} else {
last_position_ = position_;
position_ = *position;
position_time_delta_ = (stale_count_ + 1) * kDt;
stale_count_ = 0;
}
#if HAVE_SHIFTERS
if (position) {
if (left_gear_ == LOW) {
if (right_gear_ == LOW) {
loop_->set_controller_index(0);
} else {
loop_->set_controller_index(1);
}
} else {
if (right_gear_ == LOW) {
loop_->set_controller_index(2);
} else {
loop_->set_controller_index(3);
}
}
}
#endif
}
double PolyDrivetrain::FilterVelocity(double throttle) {
const Eigen::Matrix<double, 2, 2> FF =
loop_->B().inverse() *
(Eigen::Matrix<double, 2, 2>::Identity() - loop_->A());
constexpr int kHighGearController = 3;
const Eigen::Matrix<double, 2, 2> FF_high =
loop_->controller(kHighGearController).plant.B().inverse() *
(Eigen::Matrix<double, 2, 2>::Identity() -
loop_->controller(kHighGearController).plant.A());
::Eigen::Matrix<double, 1, 2> FF_sum = FF.colwise().sum();
int min_FF_sum_index;
const double min_FF_sum = FF_sum.minCoeff(&min_FF_sum_index);
const double min_K_sum = loop_->K().col(min_FF_sum_index).sum();
const double high_min_FF_sum = FF_high.col(0).sum();
const double adjusted_ff_voltage =
::aos::Clip(throttle * 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0);
return (adjusted_ff_voltage +
ttrust_ * min_K_sum * (loop_->X_hat(0, 0) + loop_->X_hat(1, 0)) /
2.0) /
(ttrust_ * min_K_sum + min_FF_sum);
}
double PolyDrivetrain::MaxVelocity() {
const Eigen::Matrix<double, 2, 2> FF =
loop_->B().inverse() *
(Eigen::Matrix<double, 2, 2>::Identity() - loop_->A());
constexpr int kHighGearController = 3;
const Eigen::Matrix<double, 2, 2> FF_high =
loop_->controller(kHighGearController).plant.B().inverse() *
(Eigen::Matrix<double, 2, 2>::Identity() -
loop_->controller(kHighGearController).plant.A());
::Eigen::Matrix<double, 1, 2> FF_sum = FF.colwise().sum();
int min_FF_sum_index;
const double min_FF_sum = FF_sum.minCoeff(&min_FF_sum_index);
// const double min_K_sum = loop_->K().col(min_FF_sum_index).sum();
const double high_min_FF_sum = FF_high.col(0).sum();
const double adjusted_ff_voltage =
::aos::Clip(12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0);
return adjusted_ff_voltage / min_FF_sum;
}
void PolyDrivetrain::Update() {
// TODO(austin): Observer for the current velocity instead of difference
// calculations.
++counter_;
#if HAVE_SHIFTERS
const double current_left_velocity =
(position_.left_encoder - last_position_.left_encoder) /
position_time_delta_;
const double current_right_velocity =
(position_.right_encoder - last_position_.right_encoder) /
position_time_delta_;
const double left_motor_speed =
MotorSpeed(left_gear_ == HIGH, current_left_velocity);
const double right_motor_speed =
MotorSpeed(right_gear_ == HIGH, current_right_velocity);
{
CIMLogging logging;
// Reset the CIM model to the current conditions to be ready for when we
// shift.
if (IsInGear(left_gear_)) {
logging.left_in_gear = true;
} else {
logging.left_in_gear = false;
}
logging.left_motor_speed = left_motor_speed;
logging.left_velocity = current_left_velocity;
if (IsInGear(right_gear_)) {
logging.right_in_gear = true;
} else {
logging.right_in_gear = false;
}
logging.right_motor_speed = right_motor_speed;
logging.right_velocity = current_right_velocity;
LOG_STRUCT(DEBUG, "currently", logging);
}
#endif
#if HAVE_SHIFTERS
if (IsInGear(left_gear_) && IsInGear(right_gear_))
#endif
{
// FF * X = U (steady state)
const Eigen::Matrix<double, 2, 2> FF =
loop_->B().inverse() *
(Eigen::Matrix<double, 2, 2>::Identity() - loop_->A());
// Invert the plant to figure out how the velocity filter would have to
// work
// out in order to filter out the forwards negative inertia.
// This math assumes that the left and right power and velocity are
// equals,
// and that the plant is the same on the left and right.
const double fvel = FilterVelocity(throttle_);
const double sign_svel = wheel_ * ((fvel > 0.0) ? 1.0 : -1.0);
double steering_velocity;
if (quickturn_) {
steering_velocity = wheel_ * MaxVelocity();
} else {
steering_velocity = ::std::abs(fvel) * wheel_;
}
const double left_velocity = fvel - steering_velocity;
const double right_velocity = fvel + steering_velocity;
// Integrate velocity to get the position.
// This position is used to get integral control.
loop_->mutable_R() << left_velocity, right_velocity;
if (!quickturn_) {
// K * R = w
Eigen::Matrix<double, 1, 2> equality_k;
equality_k << 1 + sign_svel, -(1 - sign_svel);
const double equality_w = 0.0;
// Construct a constraint on R by manipulating the constraint on U
::aos::controls::HPolytope<2> R_poly = ::aos::controls::HPolytope<2>(
U_Poly_.H() * (loop_->K() + FF),
U_Poly_.k() + U_Poly_.H() * loop_->K() * loop_->X_hat());
// Limit R back inside the box.
loop_->mutable_R() =
CoerceGoal(R_poly, equality_k, equality_w, loop_->R());
}
const Eigen::Matrix<double, 2, 1> FF_volts = FF * loop_->R();
const Eigen::Matrix<double, 2, 1> U_ideal =
loop_->K() * (loop_->R() - loop_->X_hat()) + FF_volts;
for (int i = 0; i < 2; i++) {
loop_->mutable_U()[i] = ::aos::Clip(U_ideal[i], -12, 12);
}
// TODO(austin): Model this better.
// TODO(austin): Feed back?
loop_->mutable_X_hat() =
loop_->A() * loop_->X_hat() + loop_->B() * loop_->U();
#if HAVE_SHIFTERS
} else {
// Any motor is not in gear. Speed match.
::Eigen::Matrix<double, 1, 1> R_left;
::Eigen::Matrix<double, 1, 1> R_right;
R_left(0, 0) = left_motor_speed;
R_right(0, 0) = right_motor_speed;
const double wiggle =
(static_cast<double>((counter_ % 20) / 10) - 0.5) * 5.0;
loop_->mutable_U(0, 0) = ::aos::Clip(
(R_left / Kv)(0, 0) + (IsInGear(left_gear_) ? 0 : wiggle), -12.0, 12.0);
loop_->mutable_U(1, 0) =
::aos::Clip((R_right / Kv)(0, 0) + (IsInGear(right_gear_) ? 0 : wiggle),
-12.0, 12.0);
loop_->mutable_U() *= 12.0 / ::aos::robot_state->voltage_battery;
#endif
}
}
void PolyDrivetrain::SendMotors(
::y2012::control_loops::DrivetrainQueue::Output *output) {
if (output != NULL) {
output->left_voltage = loop_->U(0, 0);
output->right_voltage = loop_->U(1, 0);
output->left_high = left_gear_ == HIGH || left_gear_ == SHIFTING_UP;
output->right_high = right_gear_ == HIGH || right_gear_ == SHIFTING_UP;
}
}
constexpr double PolyDrivetrain::kStallTorque;
constexpr double PolyDrivetrain::kStallCurrent;
constexpr double PolyDrivetrain::kFreeSpeed;
constexpr double PolyDrivetrain::kFreeCurrent;
constexpr double PolyDrivetrain::kWheelRadius;
constexpr double PolyDrivetrain::kR;
constexpr double PolyDrivetrain::Kv;
constexpr double PolyDrivetrain::Kt;
} // namespace drivetrain
} // namespace control_loops
} // namespace y2012