| #include "y2012/control_loops/drivetrain/polydrivetrain.h" |
| |
| #include "aos/common/logging/logging.h" |
| #include "aos/common/controls/polytope.h" |
| #include "aos/common/commonmath.h" |
| #include "aos/common/logging/queue_logging.h" |
| #include "aos/common/logging/matrix_logging.h" |
| |
| #include "aos/common/messages/robot_state.q.h" |
| #include "frc971/control_loops/state_feedback_loop.h" |
| #include "frc971/control_loops/coerce_goal.h" |
| #include "y2012/control_loops/drivetrain/drivetrain.q.h" |
| #include "y2012/control_loops/drivetrain/drivetrain_dog_motor_plant.h" |
| #include "y2012/control_loops/drivetrain/polydrivetrain_dog_motor_plant.h" |
| |
| #define HAVE_SHIFTERS 1 |
| |
| namespace y2012 { |
| namespace control_loops { |
| namespace drivetrain { |
| |
| using ::y2012::control_loops::GearLogging; |
| using ::y2012::control_loops::CIMLogging; |
| using ::frc971::control_loops::CoerceGoal; |
| |
| PolyDrivetrain::PolyDrivetrain() |
| : U_Poly_((Eigen::Matrix<double, 4, 2>() << /*[[*/ 1, 0 /*]*/, |
| /*[*/ -1, 0 /*]*/, |
| /*[*/ 0, 1 /*]*/, |
| /*[*/ 0, -1 /*]]*/).finished(), |
| (Eigen::Matrix<double, 4, 1>() << /*[[*/ 12 /*]*/, |
| /*[*/ 12 /*]*/, |
| /*[*/ 12 /*]*/, |
| /*[*/ 12 /*]]*/).finished()), |
| loop_(new StateFeedbackLoop<2, 2, 2>( |
| ::y2012::control_loops::drivetrain::MakeVelocityDrivetrainLoop())), |
| ttrust_(1.1), |
| wheel_(0.0), |
| throttle_(0.0), |
| quickturn_(false), |
| stale_count_(0), |
| position_time_delta_(kDt), |
| left_gear_(LOW), |
| right_gear_(LOW), |
| counter_(0) { |
| last_position_.Zero(); |
| position_.Zero(); |
| } |
| |
| double PolyDrivetrain::MotorSpeed(bool high_gear, double velocity) { |
| if (high_gear) { |
| return velocity / kHighGearRatio / kWheelRadius; |
| } else { |
| return velocity / kLowGearRatio / kWheelRadius; |
| } |
| } |
| |
| void PolyDrivetrain::SetGoal(double wheel, double throttle, bool quickturn, |
| bool highgear) { |
| const double kWheelNonLinearity = 0.3; |
| // Apply a sin function that's scaled to make it feel better. |
| const double angular_range = M_PI_2 * kWheelNonLinearity; |
| |
| wheel_ = sin(angular_range * wheel) / sin(angular_range); |
| wheel_ = sin(angular_range * wheel_) / sin(angular_range); |
| quickturn_ = quickturn; |
| |
| static const double kThrottleDeadband = 0.05; |
| if (::std::abs(throttle) < kThrottleDeadband) { |
| throttle_ = 0; |
| } else { |
| throttle_ = copysign( |
| (::std::abs(throttle) - kThrottleDeadband) / (1.0 - kThrottleDeadband), |
| throttle); |
| } |
| |
| // TODO(austin): Fix the upshift logic to include states. |
| Gear requested_gear = highgear ? HIGH : LOW; |
| |
| const Gear shift_up = HIGH; |
| const Gear shift_down = LOW; |
| |
| if (left_gear_ != requested_gear) { |
| if (IsInGear(left_gear_)) { |
| if (requested_gear == HIGH) { |
| left_gear_ = shift_up; |
| } else { |
| left_gear_ = shift_down; |
| } |
| } else { |
| if (requested_gear == HIGH && left_gear_ == SHIFTING_DOWN) { |
| left_gear_ = SHIFTING_UP; |
| } else if (requested_gear == LOW && left_gear_ == SHIFTING_UP) { |
| left_gear_ = SHIFTING_DOWN; |
| } |
| } |
| } |
| if (right_gear_ != requested_gear) { |
| if (IsInGear(right_gear_)) { |
| if (requested_gear == HIGH) { |
| right_gear_ = shift_up; |
| } else { |
| right_gear_ = shift_down; |
| } |
| } else { |
| if (requested_gear == HIGH && right_gear_ == SHIFTING_DOWN) { |
| right_gear_ = SHIFTING_UP; |
| } else if (requested_gear == LOW && right_gear_ == SHIFTING_UP) { |
| right_gear_ = SHIFTING_DOWN; |
| } |
| } |
| } |
| } |
| void PolyDrivetrain::SetPosition( |
| const ::y2012::control_loops::DrivetrainQueue::Position *position) { |
| if (position == NULL) { |
| ++stale_count_; |
| } else { |
| last_position_ = position_; |
| position_ = *position; |
| position_time_delta_ = (stale_count_ + 1) * kDt; |
| stale_count_ = 0; |
| } |
| |
| #if HAVE_SHIFTERS |
| if (position) { |
| if (left_gear_ == LOW) { |
| if (right_gear_ == LOW) { |
| loop_->set_controller_index(0); |
| } else { |
| loop_->set_controller_index(1); |
| } |
| } else { |
| if (right_gear_ == LOW) { |
| loop_->set_controller_index(2); |
| } else { |
| loop_->set_controller_index(3); |
| } |
| } |
| } |
| #endif |
| } |
| |
| double PolyDrivetrain::FilterVelocity(double throttle) { |
| const Eigen::Matrix<double, 2, 2> FF = |
| loop_->B().inverse() * |
| (Eigen::Matrix<double, 2, 2>::Identity() - loop_->A()); |
| |
| constexpr int kHighGearController = 3; |
| const Eigen::Matrix<double, 2, 2> FF_high = |
| loop_->controller(kHighGearController).plant.B().inverse() * |
| (Eigen::Matrix<double, 2, 2>::Identity() - |
| loop_->controller(kHighGearController).plant.A()); |
| |
| ::Eigen::Matrix<double, 1, 2> FF_sum = FF.colwise().sum(); |
| int min_FF_sum_index; |
| const double min_FF_sum = FF_sum.minCoeff(&min_FF_sum_index); |
| const double min_K_sum = loop_->K().col(min_FF_sum_index).sum(); |
| const double high_min_FF_sum = FF_high.col(0).sum(); |
| |
| const double adjusted_ff_voltage = |
| ::aos::Clip(throttle * 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0); |
| return (adjusted_ff_voltage + |
| ttrust_ * min_K_sum * (loop_->X_hat(0, 0) + loop_->X_hat(1, 0)) / |
| 2.0) / |
| (ttrust_ * min_K_sum + min_FF_sum); |
| } |
| |
| double PolyDrivetrain::MaxVelocity() { |
| const Eigen::Matrix<double, 2, 2> FF = |
| loop_->B().inverse() * |
| (Eigen::Matrix<double, 2, 2>::Identity() - loop_->A()); |
| |
| constexpr int kHighGearController = 3; |
| const Eigen::Matrix<double, 2, 2> FF_high = |
| loop_->controller(kHighGearController).plant.B().inverse() * |
| (Eigen::Matrix<double, 2, 2>::Identity() - |
| loop_->controller(kHighGearController).plant.A()); |
| |
| ::Eigen::Matrix<double, 1, 2> FF_sum = FF.colwise().sum(); |
| int min_FF_sum_index; |
| const double min_FF_sum = FF_sum.minCoeff(&min_FF_sum_index); |
| // const double min_K_sum = loop_->K().col(min_FF_sum_index).sum(); |
| const double high_min_FF_sum = FF_high.col(0).sum(); |
| |
| const double adjusted_ff_voltage = |
| ::aos::Clip(12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0); |
| return adjusted_ff_voltage / min_FF_sum; |
| } |
| |
| void PolyDrivetrain::Update() { |
| // TODO(austin): Observer for the current velocity instead of difference |
| // calculations. |
| ++counter_; |
| #if HAVE_SHIFTERS |
| const double current_left_velocity = |
| (position_.left_encoder - last_position_.left_encoder) / |
| position_time_delta_; |
| const double current_right_velocity = |
| (position_.right_encoder - last_position_.right_encoder) / |
| position_time_delta_; |
| const double left_motor_speed = |
| MotorSpeed(left_gear_ == HIGH, current_left_velocity); |
| const double right_motor_speed = |
| MotorSpeed(right_gear_ == HIGH, current_right_velocity); |
| |
| { |
| CIMLogging logging; |
| |
| // Reset the CIM model to the current conditions to be ready for when we |
| // shift. |
| if (IsInGear(left_gear_)) { |
| logging.left_in_gear = true; |
| } else { |
| logging.left_in_gear = false; |
| } |
| logging.left_motor_speed = left_motor_speed; |
| logging.left_velocity = current_left_velocity; |
| if (IsInGear(right_gear_)) { |
| logging.right_in_gear = true; |
| } else { |
| logging.right_in_gear = false; |
| } |
| logging.right_motor_speed = right_motor_speed; |
| logging.right_velocity = current_right_velocity; |
| |
| LOG_STRUCT(DEBUG, "currently", logging); |
| } |
| #endif |
| |
| #if HAVE_SHIFTERS |
| if (IsInGear(left_gear_) && IsInGear(right_gear_)) |
| #endif |
| { |
| // FF * X = U (steady state) |
| const Eigen::Matrix<double, 2, 2> FF = |
| loop_->B().inverse() * |
| (Eigen::Matrix<double, 2, 2>::Identity() - loop_->A()); |
| |
| // Invert the plant to figure out how the velocity filter would have to |
| // work |
| // out in order to filter out the forwards negative inertia. |
| // This math assumes that the left and right power and velocity are |
| // equals, |
| // and that the plant is the same on the left and right. |
| const double fvel = FilterVelocity(throttle_); |
| |
| const double sign_svel = wheel_ * ((fvel > 0.0) ? 1.0 : -1.0); |
| double steering_velocity; |
| if (quickturn_) { |
| steering_velocity = wheel_ * MaxVelocity(); |
| } else { |
| steering_velocity = ::std::abs(fvel) * wheel_; |
| } |
| const double left_velocity = fvel - steering_velocity; |
| const double right_velocity = fvel + steering_velocity; |
| |
| // Integrate velocity to get the position. |
| // This position is used to get integral control. |
| loop_->mutable_R() << left_velocity, right_velocity; |
| |
| if (!quickturn_) { |
| // K * R = w |
| Eigen::Matrix<double, 1, 2> equality_k; |
| equality_k << 1 + sign_svel, -(1 - sign_svel); |
| const double equality_w = 0.0; |
| |
| // Construct a constraint on R by manipulating the constraint on U |
| ::aos::controls::HPolytope<2> R_poly = ::aos::controls::HPolytope<2>( |
| U_Poly_.H() * (loop_->K() + FF), |
| U_Poly_.k() + U_Poly_.H() * loop_->K() * loop_->X_hat()); |
| |
| // Limit R back inside the box. |
| loop_->mutable_R() = |
| CoerceGoal(R_poly, equality_k, equality_w, loop_->R()); |
| } |
| |
| const Eigen::Matrix<double, 2, 1> FF_volts = FF * loop_->R(); |
| const Eigen::Matrix<double, 2, 1> U_ideal = |
| loop_->K() * (loop_->R() - loop_->X_hat()) + FF_volts; |
| |
| for (int i = 0; i < 2; i++) { |
| loop_->mutable_U()[i] = ::aos::Clip(U_ideal[i], -12, 12); |
| } |
| |
| // TODO(austin): Model this better. |
| // TODO(austin): Feed back? |
| loop_->mutable_X_hat() = |
| loop_->A() * loop_->X_hat() + loop_->B() * loop_->U(); |
| #if HAVE_SHIFTERS |
| } else { |
| // Any motor is not in gear. Speed match. |
| ::Eigen::Matrix<double, 1, 1> R_left; |
| ::Eigen::Matrix<double, 1, 1> R_right; |
| R_left(0, 0) = left_motor_speed; |
| R_right(0, 0) = right_motor_speed; |
| |
| const double wiggle = |
| (static_cast<double>((counter_ % 20) / 10) - 0.5) * 5.0; |
| |
| loop_->mutable_U(0, 0) = ::aos::Clip( |
| (R_left / Kv)(0, 0) + (IsInGear(left_gear_) ? 0 : wiggle), -12.0, 12.0); |
| loop_->mutable_U(1, 0) = |
| ::aos::Clip((R_right / Kv)(0, 0) + (IsInGear(right_gear_) ? 0 : wiggle), |
| -12.0, 12.0); |
| loop_->mutable_U() *= 12.0 / ::aos::robot_state->voltage_battery; |
| #endif |
| } |
| } |
| |
| void PolyDrivetrain::SendMotors( |
| ::y2012::control_loops::DrivetrainQueue::Output *output) { |
| if (output != NULL) { |
| output->left_voltage = loop_->U(0, 0); |
| output->right_voltage = loop_->U(1, 0); |
| output->left_high = left_gear_ == HIGH || left_gear_ == SHIFTING_UP; |
| output->right_high = right_gear_ == HIGH || right_gear_ == SHIFTING_UP; |
| } |
| } |
| |
| constexpr double PolyDrivetrain::kStallTorque; |
| constexpr double PolyDrivetrain::kStallCurrent; |
| constexpr double PolyDrivetrain::kFreeSpeed; |
| constexpr double PolyDrivetrain::kFreeCurrent; |
| constexpr double PolyDrivetrain::kWheelRadius; |
| constexpr double PolyDrivetrain::kR; |
| constexpr double PolyDrivetrain::Kv; |
| constexpr double PolyDrivetrain::Kt; |
| |
| } // namespace drivetrain |
| } // namespace control_loops |
| } // namespace y2012 |