Add a sparse convex solver

This is a port of the dense convex solver to a sparse one.  The syntax
is different enough it isn't worth pretending we can share code.

Change-Id: I16788db62ccc3105ed866cef0a8cefe850ac5dfb
Signed-off-by: Austin Schuh <austin.linux@gmail.com>
diff --git a/frc971/solvers/sparse_convex.cc b/frc971/solvers/sparse_convex.cc
new file mode 100644
index 0000000..dfb418f
--- /dev/null
+++ b/frc971/solvers/sparse_convex.cc
@@ -0,0 +1,361 @@
+#include "frc971/solvers/sparse_convex.h"
+
+#include <Eigen/Sparse>
+#include <Eigen/SparseLU>
+
+#include "absl/strings/str_join.h"
+#include "glog/logging.h"
+
+namespace frc971 {
+namespace solvers {
+
+Eigen::VectorXd SparseSolver::Rt(const Derivatives &derivatives,
+                                 Eigen::VectorXd y, double t_inverse) {
+  Eigen::VectorXd result(derivatives.states() +
+                         derivatives.inequality_constraints() +
+                         derivatives.equality_constraints());
+
+  // states x 1
+  Eigen::Ref<Eigen::VectorXd> r_dual =
+      result.block(0, 0, derivatives.states(), 1);
+  // inequality_constraints x 1
+  Eigen::Ref<Eigen::VectorXd> r_cent = result.block(
+      derivatives.states(), 0, derivatives.inequality_constraints(), 1);
+  // equality_constraints x 1
+  Eigen::Ref<Eigen::VectorXd> r_pri =
+      result.block(derivatives.states() + derivatives.inequality_constraints(),
+                   0, derivatives.equality_constraints(), 1);
+
+  // inequality_constraints x 1
+  Eigen::Ref<const Eigen::VectorXd> lambda =
+      y.block(derivatives.states(), 0, derivatives.inequality_constraints(), 1);
+  // equality_constraints x 1
+  Eigen::Ref<const Eigen::VectorXd> v =
+      y.block(derivatives.states() + derivatives.inequality_constraints(), 0,
+              derivatives.equality_constraints(), 1);
+
+  r_dual = derivatives.gradient + derivatives.df.transpose() * lambda +
+           derivatives.A.transpose() * v;
+  r_cent = -lambda.array() * derivatives.f.array() - t_inverse;
+  r_pri = derivatives.Axmb;
+
+  return result;
+}
+
+void AppendColumns(std::vector<Eigen::Triplet<double>> *triplet_list,
+                   size_t starting_row, size_t starting_column,
+                   const Eigen::SparseMatrix<double> &matrix) {
+  for (int k = 0; k < matrix.outerSize(); ++k) {
+    for (Eigen::SparseMatrix<double, Eigen::ColMajor>::InnerIterator it(matrix,
+                                                                        k);
+         it; ++it) {
+      (*triplet_list)
+          .emplace_back(it.row() + starting_row, it.col() + starting_column,
+                        it.value());
+    }
+  }
+}
+
+void AppendColumns(
+    std::vector<Eigen::Triplet<double>> *triplet_list, size_t starting_row,
+    size_t starting_column,
+    const Eigen::DiagonalMatrix<double, Eigen::Dynamic> &matrix) {
+  for (int k = 0; k < matrix.rows(); ++k) {
+    (*triplet_list)
+        .emplace_back(k + starting_row, k + starting_column,
+                      matrix.diagonal()(k));
+  }
+}
+
+Eigen::VectorXd SparseSolver::Solve(
+    const SparseConvexProblem &problem,
+    Eigen::Ref<const Eigen::VectorXd> X_initial) {
+  CHECK_EQ(static_cast<size_t>(X_initial.rows()), problem.states());
+  CHECK_EQ(X_initial.cols(), 1);
+
+  const Eigen::IOFormat kHeavyFormat(Eigen::StreamPrecision, 0, ", ",
+                                     ",\n                        "
+                                     "                                     ",
+                                     "[", "]", "[", "]");
+
+  Eigen::VectorXd y = Eigen::VectorXd::Constant(
+      problem.states() + problem.inequality_constraints() +
+          problem.equality_constraints(),
+      1.0);
+  y.block(0, 0, problem.states(), 1) = X_initial;
+
+  Derivatives derivatives = ComputeDerivative(problem, y);
+
+  for (size_t i = 0; i < problem.inequality_constraints(); ++i) {
+    CHECK_LE(derivatives.f(i, 0), 0.0)
+        << ": Initial state " << X_initial.transpose().format(kHeavyFormat)
+        << " not feasible";
+  }
+
+  PrintDerivatives(derivatives, y, "", 1);
+
+  size_t iteration = 0;
+  while (true) {
+    // Solve for the primal-dual search direction by solving the newton step.
+
+    // inequality_constraints x 1;
+    Eigen::Ref<const Eigen::VectorXd> lambda =
+        y.block(problem.states(), 0, problem.inequality_constraints(), 1);
+
+    const double nu = -(derivatives.f.transpose() * lambda)(0, 0);
+    const double t_inverse = nu / (kMu * lambda.rows());
+    Eigen::VectorXd rt_orig = Rt(derivatives, y, t_inverse);
+
+    std::vector<Eigen::Triplet<double>> triplet_list;
+
+    AppendColumns(&triplet_list, 0, 0, derivatives.hessian);
+    AppendColumns(&triplet_list, 0, problem.states(),
+                  derivatives.df.transpose());
+    AppendColumns(&triplet_list, 0,
+                  problem.states() + problem.inequality_constraints(),
+                  derivatives.A.transpose());
+
+    // TODO(austin): I think I can do better on the next 2, making them more
+    // efficient and not creating the intermediate matrix.
+    AppendColumns(&triplet_list, problem.states(), 0,
+                  -(Eigen::DiagonalMatrix<double, Eigen::Dynamic>(lambda) *
+                    derivatives.df));
+    AppendColumns(
+        &triplet_list, problem.states(), problem.states(),
+        Eigen::DiagonalMatrix<double, Eigen::Dynamic>(-derivatives.f));
+
+    AppendColumns(&triplet_list,
+                  problem.states() + problem.inequality_constraints(), 0,
+                  derivatives.A);
+
+    Eigen::SparseMatrix<double> m1(
+        problem.states() + problem.inequality_constraints() +
+            problem.equality_constraints(),
+        problem.states() + problem.inequality_constraints() +
+            problem.equality_constraints());
+    m1.setFromTriplets(triplet_list.begin(), triplet_list.end());
+
+    Eigen::SparseLU<Eigen::SparseMatrix<double>> solver;
+    solver.analyzePattern(m1);
+    solver.factorize(m1);
+    Eigen::VectorXd dy = solver.solve(-rt_orig);
+
+    Eigen::Ref<Eigen::VectorXd> dlambda =
+        dy.block(problem.states(), 0, problem.inequality_constraints(), 1);
+
+    double s = 1.0;
+
+    // Now, time to do line search.
+    //
+    // Start by keeping lambda positive.  Make sure our step doesn't let
+    // lambda cross 0.
+    for (int i = 0; i < dlambda.rows(); ++i) {
+      if (lambda(i) + s * dlambda(i) < 0.0) {
+        // Ignore tiny steps in lambda.  They cause issues when we get really
+        // close to having our constraints met but haven't converged the rest
+        // of the problem and start to run into rounding issues in the matrix
+        // solve portion.
+        if (dlambda(i) < 0.0 && dlambda(i) > -1e-12) {
+          VLOG(1) << "  lambda(" << i << ") " << lambda(i) << " + " << s
+                  << " * " << dlambda(i) << " -> s would be now "
+                  << -lambda(i) / dlambda(i);
+          dlambda(i) = 0.0;
+          VLOG(1) << "  dy -> " << std::setprecision(12) << std::fixed
+                  << std::setfill(' ') << dy.transpose().format(kHeavyFormat);
+          continue;
+        }
+        VLOG(1) << "  lambda(" << i << ") " << lambda(i) << " + " << s << " * "
+                << dlambda(i) << " -> s now " << -lambda(i) / dlambda(i);
+        s = -lambda(i) / dlambda(i);
+      }
+    }
+
+    VLOG(1) << "  After lambda line search, s is " << s;
+
+    VLOG(3) << "  Initial step " << iteration << " -> " << std::setprecision(12)
+            << std::fixed << std::setfill(' ')
+            << dy.transpose().format(kHeavyFormat);
+    VLOG(3) << "   rt ->                                        "
+            << std::setprecision(12) << std::fixed << std::setfill(' ')
+            << rt_orig.transpose().format(kHeavyFormat);
+
+    const double rt_orig_squared_norm = rt_orig.squaredNorm();
+
+    Eigen::VectorXd next_y;
+    Eigen::VectorXd rt;
+    Derivatives next_derivatives;
+    while (true) {
+      next_y = y + s * dy;
+      next_derivatives = ComputeDerivative(problem, next_y);
+      rt = Rt(next_derivatives, next_y, t_inverse);
+
+      const Eigen::Ref<const Eigen::VectorXd> next_x =
+          next_y.block(0, 0, next_derivatives.hessian.rows(), 1);
+      const Eigen::Ref<const Eigen::VectorXd> next_lambda =
+          next_y.block(next_x.rows(), 0, next_derivatives.f.rows(), 1);
+
+      const Eigen::Ref<const Eigen::VectorXd> next_v = next_y.block(
+          next_x.rows() + next_lambda.rows(), 0, next_derivatives.A.rows(), 1);
+
+      VLOG(1) << "    next_rt(" << iteration << ") is " << rt.norm() << " -> "
+              << std::setprecision(12) << std::fixed << std::setfill(' ')
+              << rt.transpose().format(kHeavyFormat);
+
+      PrintDerivatives(next_derivatives, next_y, "next_", 3);
+
+      if (next_derivatives.f.maxCoeff() > 0.0) {
+        VLOG(1) << "   f_next > 0.0  -> " << next_derivatives.f.maxCoeff()
+                << ", continuing line search.";
+        s *= kBeta;
+      } else if (next_derivatives.Axmb.squaredNorm() < 0.1 &&
+                 rt.squaredNorm() >
+                     std::pow(1.0 - kAlpha * s, 2.0) * rt_orig_squared_norm) {
+        VLOG(1) << "   |Rt| > |Rt+1| " << rt.norm() << " >  " << rt_orig.norm()
+                << ", drt -> " << std::setprecision(12) << std::fixed
+                << std::setfill(' ')
+                << (rt_orig - rt).transpose().format(kHeavyFormat);
+        s *= kBeta;
+      } else {
+        break;
+      }
+    }
+
+    VLOG(1) << "  Terminated line search with s " << s << ", " << rt.norm()
+            << "(|Rt+1|) < " << rt_orig.norm() << "(|Rt|)";
+    y = next_y;
+
+    const Eigen::Ref<const Eigen::VectorXd> next_lambda =
+        y.block(problem.states(), 0, problem.inequality_constraints(), 1);
+
+    // See if we hit our convergence criteria.
+    const double r_primal_squared_norm =
+        rt.block(problem.states() + problem.inequality_constraints(), 0,
+                 problem.equality_constraints(), 1)
+            .squaredNorm();
+    VLOG(1) << "  rt_next(" << iteration << ") is " << rt.norm() << " -> "
+            << std::setprecision(12) << std::fixed << std::setfill(' ')
+            << rt.transpose().format(kHeavyFormat);
+    if (r_primal_squared_norm < kEpsilonF * kEpsilonF) {
+      const double r_dual_squared_norm =
+          rt.block(0, 0, problem.states(), 1).squaredNorm();
+      if (r_dual_squared_norm < kEpsilonF * kEpsilonF) {
+        const double next_nu =
+            -(next_derivatives.f.transpose() * next_lambda)(0, 0);
+        if (next_nu < kEpsilon) {
+          VLOG(1) << "  r_primal(" << iteration << ") -> "
+                  << std::sqrt(r_primal_squared_norm) << " < " << kEpsilonF
+                  << ", r_dual(" << iteration << ") -> "
+                  << std::sqrt(r_dual_squared_norm) << " < " << kEpsilonF
+                  << ", nu(" << iteration << ") -> " << next_nu << " < "
+                  << kEpsilon;
+          break;
+        } else {
+          VLOG(1) << "  nu(" << iteration << ") -> " << next_nu << " < "
+                  << kEpsilon << ", not done yet";
+        }
+
+      } else {
+        VLOG(1) << "  r_dual(" << iteration << ") -> "
+                << std::sqrt(r_dual_squared_norm) << " < " << kEpsilonF
+                << ", not done yet";
+      }
+    } else {
+      VLOG(1) << "  r_primal(" << iteration << ") -> "
+              << std::sqrt(r_primal_squared_norm) << " < " << kEpsilonF
+              << ", not done yet";
+    }
+    VLOG(1) << "  step(" << iteration << ") " << std::setprecision(12)
+            << (s * dy).transpose().format(kHeavyFormat);
+    VLOG(1) << " y(" << iteration << ") is now " << std::setprecision(12)
+            << y.transpose().format(kHeavyFormat);
+
+    // Very import, use the last set of derivatives we picked for our new y
+    // for the next iteration.  This avoids re-computing it.
+    derivatives = std::move(next_derivatives);
+
+    ++iteration;
+    if (iteration > 100) {
+      LOG(FATAL) << "Too many iterations";
+    }
+  }
+
+  return y.block(0, 0, problem.states(), 1);
+}
+
+SparseSolver::Derivatives SparseSolver::ComputeDerivative(
+    const SparseConvexProblem &problem,
+    const Eigen::Ref<const Eigen::VectorXd> y) {
+  // states x 1
+  const Eigen::Ref<const Eigen::VectorXd> x =
+      y.block(0, 0, problem.states(), 1);
+
+  Derivatives derivatives;
+  derivatives.gradient = problem.df0(x);
+  CHECK_EQ(static_cast<size_t>(derivatives.gradient.rows()), problem.states());
+  CHECK_EQ(static_cast<size_t>(derivatives.gradient.cols()), 1u);
+
+  derivatives.hessian = problem.ddf0(x);
+  CHECK_EQ(static_cast<size_t>(derivatives.hessian.rows()), problem.states());
+  CHECK_EQ(static_cast<size_t>(derivatives.hessian.cols()), problem.states());
+
+  derivatives.f = problem.f(x);
+  CHECK_EQ(static_cast<size_t>(derivatives.f.rows()),
+           problem.inequality_constraints());
+  CHECK_EQ(static_cast<size_t>(derivatives.f.cols()), 1u);
+
+  derivatives.df = problem.df(x);
+  CHECK_EQ(static_cast<size_t>(derivatives.df.rows()),
+           problem.inequality_constraints());
+  CHECK_EQ(static_cast<size_t>(derivatives.df.cols()), problem.states());
+
+  derivatives.A = problem.A();
+  CHECK_EQ(static_cast<size_t>(derivatives.A.rows()),
+           problem.equality_constraints());
+  CHECK_EQ(static_cast<size_t>(derivatives.A.cols()), problem.states());
+
+  derivatives.Axmb =
+      derivatives.A * y.block(0, 0, problem.states(), 1) - problem.b();
+  CHECK_EQ(static_cast<size_t>(derivatives.Axmb.rows()),
+           problem.equality_constraints());
+  CHECK_EQ(static_cast<size_t>(derivatives.Axmb.cols()), 1u);
+
+  return derivatives;
+}
+
+void SparseSolver::PrintDerivatives(const Derivatives &derivatives,
+                                    const Eigen::Ref<const Eigen::VectorXd> y,
+                                    std::string_view prefix, int verbosity) {
+  const Eigen::Ref<const Eigen::VectorXd> x =
+      y.block(0, 0, derivatives.hessian.rows(), 1);
+  const Eigen::Ref<const Eigen::VectorXd> lambda =
+      y.block(x.rows(), 0, derivatives.f.rows(), 1);
+
+  if (VLOG_IS_ON(verbosity)) {
+    Eigen::IOFormat heavy(Eigen::StreamPrecision, 0, ", ",
+                          ",\n                        "
+                          "                                     ",
+                          "[", "]", "[", "]");
+    heavy.rowSeparator =
+        heavy.rowSeparator +
+        std::string(absl::StrCat(getpid()).size() + prefix.size(), ' ');
+
+    const Eigen::Ref<const Eigen::VectorXd> v =
+        y.block(x.rows() + lambda.rows(), 0, derivatives.A.rows(), 1);
+    VLOG(verbosity) << "   " << prefix << "x: " << x.transpose().format(heavy);
+    VLOG(verbosity) << "   " << prefix
+                    << "lambda: " << lambda.transpose().format(heavy);
+    VLOG(verbosity) << "   " << prefix << "v: " << v.transpose().format(heavy);
+    VLOG(verbosity) << "  " << prefix << "hessian:     " << derivatives.hessian;
+    VLOG(verbosity) << "  " << prefix
+                    << "gradient:    " << derivatives.gradient;
+    VLOG(verbosity) << "  " << prefix << "A:           " << derivatives.A;
+    VLOG(verbosity) << "  " << prefix
+                    << "Ax-b:        " << derivatives.Axmb.format(heavy);
+    VLOG(verbosity) << "  " << prefix
+                    << "f:           " << derivatives.f.format(heavy);
+    VLOG(verbosity) << "  " << prefix << "df:          " << derivatives.df;
+  }
+}
+
+}  // namespace solvers
+}  // namespace frc971