Providing a GUI for the spline caculations

Fixed bug with import
Added functionality for when e is pressed, points exported to csv
Added functionality for editing points
Added functionality for adding points

Change-Id: Ied5e6155a8ebfbbd6d2eecba34532245197609a8
diff --git a/y2018/control_loops/python/spline_generate.py b/y2018/control_loops/python/spline_generate.py
new file mode 100644
index 0000000..4376f37
--- /dev/null
+++ b/y2018/control_loops/python/spline_generate.py
@@ -0,0 +1,366 @@
+#!/usr/bin/python

+import numpy as np

+import matplotlib.pyplot as plt

+from frc971.control_loops.python import drivetrain

+

+# used to define properties of the drivetrain, changes depending on robot

+# see yXXXX/control_loops/python/drivetrain.py for the current values

+

+kDrivetrain = drivetrain.DrivetrainParams(

+    J = 6.0,

+    mass=68.0,

+    robot_radius=0.616 / 2.0,

+    wheel_radius=0.127 / 2.0 * 120.0 / 118.0,

+    G_low=46.0 / 60.0 * 20.0 / 48.0 * 14.0 / 62.0,

+    G_high=62.0 / 44.0 * 20.0 / 48.0 * 14.0 / 62.0,

+    q_pos_low=0.12,

+    q_pos_high=0.14,

+    q_vel_low=1.0,

+    q_vel_high=0.95,

+    efficiency=0.70,

+    has_imu=True,

+    force=True,

+    kf_q_voltage=13.0,

+    controller_poles=[0.82, 0.82],

+)

+

+drivetrain = drivetrain.Drivetrain(kDrivetrain)

+# set up coefficients for Hemrite basis function evaluation

+coeffs = np.array([[1, 0, 0, -10, 15, -6], [0, 1, 0, -6, 8, -3], [0, 0, 0.5, -1.5, 1.5, -0.5], [0, 0, 0, 0.5, -1, 0.5], [0, 0, 0, -4, 7, -3], [0, 0, 0, 10, -15, 6]])

+coeffs_prime = np.empty_like(coeffs)

+for ii in range(0, len(coeffs)):

+    for jj in range(0, len(coeffs[ii]) - 1):

+        coeffs_prime[ii][jj] = (jj + 1) * coeffs[ii][jj]

+

+def RungeKutta(f, x, dt):

+    """4th order RungeKutta integration of F starting at X."""

+    a = f(x)

+    b = f(x + dt / 2.0 * a)

+    c = f(x + dt / 2.0 * b)

+    d = f(x + dt * c)

+

+    return x + dt * (a + 2.0 * b + 2.0 * c + d) / 6.0

+

+def normalize(v):

+    norm = np.linalg.norm(v)

+    return v / norm

+

+def theta(v):

+    return np.arctan2(v[1], v[0])

+

+# evaluate Nth hermite basis function at t

+def nth_H(N, t):

+    return coeffs[N][0] + coeffs[N][1]*t + coeffs[N][2]*t**2 + coeffs[N][3]*t**3 + coeffs[N][4]*t**4 + coeffs[N][5]*t**5

+

+def nth_H_prime(N, t):

+    return coeffs[N][0] + coeffs[N][1]*t + coeffs[N][2]*t**2 + coeffs[N][3]*t**3 + coeffs[N][4]*t**4 

+

+# class defining a quintic Hermite spline, with utilities for modification and plotting

+class Hermite_Spline:

+    # init method given known parameters, ie savefile loading(if necessary)

+    def __init__(self, start, control1, control2, end, resolution = 200):

+        self.start = start

+        self.end = end

+        self.control1 = control1

+        self.control2 = control2

+

+        self.points = np.array([])

+        self.velocities = []

+        self.accelerations = []

+        self.arc_lengths = []

+        self.thetas = []

+        self.omegas = []

+        self.curvatures = []

+

+        self.shifted_points = []

+

+        self.Ks = []

+        self.dKs = []

+

+        # coefficients are po, v0, a0, a1, v1, p1

+        self.coeffs = np.array([])

+        self.compute_coefficients()

+        self.resolution = resolution

+        self.setup()

+

+    # take paramters and compute coeffcicents for Hermite basis functions, to be called every time he change control points

+    def compute_coefficients(self):

+        self.coeffs = np.append(self.coeffs, np.array(self.start))

+        self.coeffs = np.append(self.coeffs, np.array(self.control1) - np.array(self.start))

+        self.coeffs = np.append(self.coeffs, [0,0])

+        self.coeffs = np.append(self.coeffs, [0,0])

+        self.coeffs = np.append(self.coeffs, np.array(self.end) - np.array(self.control2))

+        self.coeffs = np.append(self.coeffs, np.array(self.end))

+

+        self.coeffs = np.reshape(self.coeffs, newshape = (6, 2))

+

+    # setters for control points, set coefficients

+    def set_positions(self, p1 = None, p2 = None):

+        if p1 != None:

+            self.start = p1

+        if p2 != None:

+            self.end = p2

+

+        self.compute_coefficients()

+

+    def set_controls(self, c1 = None, c2 = None):

+        if c1 != None:

+            self.control1 = c1

+        if c2 != None:

+            self.control2 = c2

+

+        self.compute_coefficients()

+

+    def set_velocities(self, v1 = None, v2 = None):

+        if v1 != None:

+            self.control1 = self.start + v1

+        if v2 != None:

+            self.control2 = self.end + v2

+        

+        self.compute_coefficients()

+

+    def get_smoothness(self):

+        K = self.get_curvature()

+        return np.sum(np.abs(np.gradient(K)))

+

+    # given Basis functions and controls compute coordinate given t

+    def spline_eval_hermite(self, t):

+        return np.array(self.coeffs[0]*nth_H(0, t) + self.coeffs[1]*nth_H(1, t)+ self.coeffs[2]*nth_H(2, t) + self.coeffs[3]*nth_H(3, t) + self.coeffs[4]* nth_H(4, t)+ self.coeffs[5]*nth_H(5, t))

+    

+    # given Basis functions and controls compute velocity given t

+    def spline_eval_hermite_v(self, t):

+         return normalize(np.array(self.coeffs[0]*nth_H_prime(0, t) + self.coeffs[1]*nth_H_prime(1, t)+ self.coeffs[2]*nth_H_prime(2, t) + self.coeffs[3]*nth_H_prime(3, t) + self.coeffs[4]* nth_H_prime(4, t)+ self.coeffs[5]*nth_H_prime(5, t)))

+

+    # take coefficients and compute spline points/properties

+    def setup(self, resolution_multiplier = 10, dt = .000001):

+        points = []

+        velocities = []

+        accelerations = []

+        s = []

+        thetas = []

+        omegas = []

+        curvatures = []

+

+        last_point = self.spline_eval_hermite(0)

+        distance = 0

+

+        # iterate through interim points and compute pos_vectors, and at predefined points arc length,

+        # velocity, and acceleration vectors and store them at their associated index 

+        for i in range(0, self.resolution * resolution_multiplier):

+            t = i / (1.0 * self.resolution * resolution_multiplier)

+

+            current_point = self.spline_eval_hermite(t)

+            current_point_dt = self.spline_eval_hermite(t + dt)

+            current_s = np.linalg.norm(current_point - last_point)

+

+            ds = np.linalg.norm(current_point_dt - current_point)

+

+            distance = current_s + distance

+            # at important points compute important values and store

+            if i % resolution_multiplier  == 0:

+                s.append(distance)

+                points.append(current_point)

+

+                v = self.spline_eval_hermite_v(t)

+                v_dt = self.spline_eval_hermite_v(t + dt)

+                theta_t = theta(v)

+                theta_dt = theta(v_dt)

+

+                a = (v_dt - v) / ds

+                omega = (theta_dt - theta_t) / ds

+                if np.linalg.norm(v) == 0:

+                    curvature = 0

+                else:

+                    curvature = np.linalg.det(np.column_stack((v, a)) / (np.linalg.norm(v)**(3/2)))

+

+                velocities.append(v)

+                accelerations.append(a)

+                thetas.append(theta_t)

+                omegas.append(omega)

+                if curvature == 0:

+                    curvatures.append(0.0001)

+                else:

+                    curvatures.append(curvature)

+ 

+            last_point = current_point

+

+        self.arc_lengths = np.array(s)

+        self.points = np.reshape(points, newshape = (-1, 2))

+        self.velocities = np.reshape(velocities, newshape = (-1, 2))

+        self.accelerations = np.reshape(accelerations, newshape = (-1, 2))

+        self.thetas = np.array(thetas)

+        self.omegas = np.array(omegas)

+        self.curvatures = np.array(curvatures)

+

+

+    def plot_diagnostics(self):

+        plt.figure("Spline")

+        plt.title('Spline')

+        plt.plot(self.points[:, 0], self.points[:, 1])

+        # plt.scatter(self.points[:, 0], self.points[:, 1])

+

+        plt.figure("Diagnostics")

+

+        plt.subplot(2, 2, 1)        

+        plt.title('theta')

+        plt.xlabel('arc_length')

+        plt.ylabel('theta')

+        theta, = plt.plot(self.arc_lengths, self.thetas, label = 'theta')

+        plt.legend(handles = [theta])

+

+        plt.subplot(2, 2, 2)

+        plt.title('omegas')

+        plt.xlabel('arc_length')

+        plt.ylabel('omega')

+        omega, = plt.plot(self.arc_lengths, self.omegas, label = 'omega')

+        plt.legend(handles = [omega])

+

+        plt.subplot(2, 2, 3)

+        plt.title('Velocities')

+        plt.xlabel('arc_length')

+        plt.ylabel('velocity')

+        dxds, = plt.plot(self.arc_lengths, self.velocities[:, 0], label = 'dx/ds')

+        dyds, = plt.plot(self.arc_lengths, self.velocities[:, 1], label = 'dy/ds')

+        plt.legend(handles = [dxds, dyds])

+

+        plt.subplot(2, 2, 4)

+        plt.title('Accelerations')

+        plt.xlabel('arc_length')

+        plt.ylabel('acceleration')

+        dx2ds2, = plt.plot(self.arc_lengths, self.accelerations[:, 0], label = 'd^2x/ds^2')

+        dy2ds2, = plt.plot(self.arc_lengths, self.accelerations[:, 1], label = 'd^2x/ds^2')

+        plt.legend(handles = [dx2ds2, dy2ds2])

+

+# class defining a number of splines with convinience methods

+class Path:

+    def __init__(self):

+        self.splines = []

+        self.knot_accels = []

+

+    def add_spline(self, spline):

+        self.splines.append(spline)

+

+    def get_K(self):

+        curvatures = []

+        for spline in self.splines:

+            curvatures.append(spline.curvatures)

+        return np.array(curvatures).flatten()

+

+    def get_S(self):

+        arc_lengths = []

+        for spline in self.splines:

+            arc_lengths.append(spline.arc_lengths)

+        return np.array(arc_lengths).flatten()

+

+    def get_points(self):

+        points = []

+        for spline in self.splines:

+            points.append(spline.points)

+        return points

+

+    def get_velocities(self, i):

+        velocities = []

+        for spline in self.splines:

+            velocities.append(spline.points)

+        return velocities

+

+    def remove_spine(self, i):

+        if i < len(self.splines):

+            self.splines.pop(i)

+        else:

+            print("index %f out of bounds, no spline of that index" % i)

+

+    def join(self, first_priority = False):

+        for i in range(0, len(self.splines)):

+            if first_priority & i != len(self.splines):

+                print("unfinished")

+

+

+# class which takes a Path object along with constraints and reparamterizes it with respect to time

+class Trajectory:

+    def __init__(self, path, max_angular_accel=3, max_voltage=11, max_normal_accel = .2):

+        self.path = path

+        self.A = drivetrain.A_continuous

+        self.B = drivetrain.B_continuous

+        self.robot_radius = drivetrain.robot_radius

+        self.Kv = 100

+        self.robot_radius = 3

+        self.max_angular_accel = max_angular_accel

+        self.max_voltage = max_voltage

+        self.max_normal_accel = max_normal_accel

+

+        self.max_velocities_adhering_to_normal_accel = []

+        self.max_velocities_adhering_to_voltage = []

+        self.path.splines[0].setup(resolution_multiplier = 100)

+

+        self.set_max_v_adhering_to_normal_accel()

+        self.max_voltageK_pass()

+

+    def set_max_v_adhering_to_normal_accel(self):

+        Ks = self.path.get_K()

+        accels = np.full_like(Ks, fill_value = self.max_normal_accel)

+        max_velocities = np.sqrt(np.abs(accels / Ks))

+        self.max_velocities_adhering_to_normal_accel = max_velocities

+

+    def max_voltageK_pass(self):

+        max_ds_dt = []

+        Ks = self.path.get_K()

+        turning_radii = np.full_like(Ks, fill_value = 1) / np.abs(Ks)

+

+    

+

+        # compute max steady-state velocity given voltage constraints  

+        for i in range(0, len(Ks)):

+            v_ratio = (turning_radii[i] + self.robot_radius) / (turning_radii[i] - self.robot_radius)

+            matrix = np.array([[self.A[1, 1], self.A[1, 3], self.B[1, 1]], [self.A[3, 1] - 1, self.A[3, 3], self.B[3, 1]], [-1, v_ratio, 0]])

+            sols = np.array([-1 * self.max_voltage * self.B[1, 0], -1 * self.max_voltage * self.B[3, 0], 0])

+            Vs = np.dot(np.linalg.inv(matrix), sols)

+            max_ds_dt.append((Vs[0] + Vs[1]) / 2)

+            

+        self.max_velocities_adhering_to_voltage = max_ds_dt

+    # compute the maximum acceleration we can ask for given voltage and, ya know, staying on the path.

+

+

+    '''

+    These methods use the continuous form of our drivetrain state equation

+    in order to compute the maximum acceleration which adheres to the path

+    and voltage constraints, as well as any arbitary set of constraints

+    on velocity as a function of arc_length

+    '''

+    

+    def forward_accel_pass(self):

+        points = self.path.get_points()

+        velocities = self.path.get_velocities()

+        curvatures = self.path.get_K()

+        arc_lenghts = self.path.get_S()

+

+        for i in range(0, len(points)):

+            Xn1 =   

+        

+    

+    def backward_accelaration_pass(self):

+

+        print("max backward accel pass")    

+

+    

+    def plot_diagnostics(self, i = 0):

+

+        plt.figure('max velocity')

+        plt.title('max_v_normal_accel')

+        plt.xlabel('arc_length')

+        plt.ylabel('max V')

+        max_v_normal = plt.plot(self.path.get_S(), self.max_velocities_adhering_to_normal_accel, label = 'ds/dt (normal)')#   , label = 'ds/dt')

+        curvature = plt.plot(self.path.get_S(), 1000 * np.abs(self.path.get_K()), label = 'K')

+        max_v_K_V = plt.plot(self.path.get_S(), self.max_velocities_adhering_to_voltage, label = 'ds/dt (voltage)')

+        plt.legend(handles = [max_v_normal[0], curvature[0], max_v_K_V[0]])

+

+def main():

+    A = Hermite_Spline(np.array([0,0]), np.array([0,400]), np.array([200,300]), np.array([200,200]), resolution = 200)

+    A.plot_diagnostics()

+    path = Path()

+    path.add_spline(A)

+    trajectory = Trajectory(path, 0)

+    trajectory.plot_diagnostics()

+    plt.show()

+

+main()