Third robot commit.

All tests pass!

Change-Id: I086248537f075fd06afdfb3e94670eb7646aaf6c
diff --git a/y2016_bot3/control_loops/drivetrain/BUILD b/y2016_bot3/control_loops/drivetrain/BUILD
new file mode 100644
index 0000000..c6e95c4
--- /dev/null
+++ b/y2016_bot3/control_loops/drivetrain/BUILD
@@ -0,0 +1,77 @@
+package(default_visibility = ['//visibility:public'])
+
+load('/aos/build/queues', 'queue_library')
+
+genrule(
+  name = 'genrule_drivetrain',
+  visibility = ['//visibility:private'],
+  cmd = '$(location //y2016_bot3/control_loops/python:drivetrain) $(OUTS)',
+  tools = [
+    '//y2016_bot3/control_loops/python:drivetrain',
+  ],
+  outs = [
+    'drivetrain_dog_motor_plant.h',
+    'drivetrain_dog_motor_plant.cc',
+    'kalman_drivetrain_motor_plant.h',
+    'kalman_drivetrain_motor_plant.cc',
+  ],
+)
+
+genrule(
+  name = 'genrule_polydrivetrain',
+  visibility = ['//visibility:private'],
+  cmd = '$(location //y2016_bot3/control_loops/python:polydrivetrain) $(OUTS)',
+  tools = [
+    '//y2016_bot3/control_loops/python:polydrivetrain',
+  ],
+  outs = [
+    'polydrivetrain_dog_motor_plant.h',
+    'polydrivetrain_dog_motor_plant.cc',
+    'polydrivetrain_cim_plant.h',
+    'polydrivetrain_cim_plant.cc',
+  ],
+)
+
+cc_library(
+  name = 'polydrivetrain_plants',
+  srcs = [
+    'polydrivetrain_dog_motor_plant.cc',
+    'drivetrain_dog_motor_plant.cc',
+    'kalman_drivetrain_motor_plant.cc',
+  ],
+  hdrs = [
+    'polydrivetrain_dog_motor_plant.h',
+    'drivetrain_dog_motor_plant.h',
+    'kalman_drivetrain_motor_plant.h',
+  ],
+  deps = [
+    '//frc971/control_loops:state_feedback_loop',
+  ],
+)
+
+cc_library(
+  name = 'drivetrain_base',
+  srcs = [
+    'drivetrain_base.cc',
+  ],
+  hdrs = [
+    'drivetrain_base.h',
+  ],
+  deps = [
+    ':polydrivetrain_plants',
+    '//frc971/control_loops/drivetrain:drivetrain_config',
+    '//frc971:shifter_hall_effect',
+  ],
+)
+
+cc_binary(
+  name = 'drivetrain',
+  srcs = [
+    'drivetrain_main.cc',
+  ],
+  deps = [
+    ':drivetrain_base',
+    '//aos/linux_code:init',
+    '//frc971/control_loops/drivetrain:drivetrain_lib',
+  ],
+)
diff --git a/y2016_bot3/control_loops/drivetrain/drivetrain_base.cc b/y2016_bot3/control_loops/drivetrain/drivetrain_base.cc
new file mode 100644
index 0000000..cefb1cf
--- /dev/null
+++ b/y2016_bot3/control_loops/drivetrain/drivetrain_base.cc
@@ -0,0 +1,46 @@
+#include "y2016_bot3/control_loops/drivetrain/drivetrain_base.h"
+
+#include "frc971/control_loops/drivetrain/drivetrain_config.h"
+
+#include "frc971/control_loops/state_feedback_loop.h"
+#include "y2016_bot3/control_loops/drivetrain/drivetrain_dog_motor_plant.h"
+#include "y2016_bot3/control_loops/drivetrain/polydrivetrain_dog_motor_plant.h"
+#include "y2016_bot3/control_loops/drivetrain/kalman_drivetrain_motor_plant.h"
+
+using ::frc971::control_loops::drivetrain::DrivetrainConfig;
+
+namespace y2016_bot3 {
+namespace control_loops {
+namespace drivetrain {
+
+using ::frc971::constants::ShifterHallEffect;
+
+const ShifterHallEffect kThreeStateDriveShifter{0.0, 0.0, 0.0, 0.0, 0.25, 0.75};
+
+const DrivetrainConfig &GetDrivetrainConfig() {
+  static DrivetrainConfig kDrivetrainConfig{
+      ::frc971::control_loops::drivetrain::ShifterType::NO_SHIFTER,
+      ::frc971::control_loops::drivetrain::LoopType::CLOSED_LOOP,
+
+      ::y2016_bot3::control_loops::drivetrain::MakeDrivetrainLoop,
+      ::y2016_bot3::control_loops::drivetrain::MakeVelocityDrivetrainLoop,
+      ::y2016_bot3::control_loops::drivetrain::MakeKFDrivetrainLoop,
+
+      drivetrain::kDt,
+      drivetrain::kRobotRadius,
+      drivetrain::kWheelRadius,
+      drivetrain::kV,
+
+      drivetrain::kHighGearRatio,
+      drivetrain::kHighGearRatio,
+      kThreeStateDriveShifter,
+      kThreeStateDriveShifter,
+      true,
+      0.0};
+
+  return kDrivetrainConfig;
+};
+
+}  // namespace drivetrain
+}  // namespace control_loops
+}  // namespace y2016_bot3
diff --git a/y2016_bot3/control_loops/drivetrain/drivetrain_base.h b/y2016_bot3/control_loops/drivetrain/drivetrain_base.h
new file mode 100644
index 0000000..d6a041e
--- /dev/null
+++ b/y2016_bot3/control_loops/drivetrain/drivetrain_base.h
@@ -0,0 +1,24 @@
+#ifndef Y2016_BOT3_CONTROL_LOOPS_DRIVETRAIN_DRIVETRAIN_BASE_H_
+#define Y2016_BOT3_CONTROL_LOOPS_DRIVETRAIN_DRIVETRAIN_BASE_H_
+
+#include "frc971/control_loops/drivetrain/drivetrain_config.h"
+
+namespace y2016_bot3 {
+namespace constants {
+static constexpr double drivetrain_max_speed = 5.0;
+
+// The ratio from the encoder shaft to the drivetrain wheels.
+// TODO(constants): Update these.
+static constexpr double kDrivetrainEncoderRatio = 1.0;
+
+}  // namespace constants
+namespace control_loops {
+namespace drivetrain {
+const ::frc971::control_loops::drivetrain::DrivetrainConfig &
+GetDrivetrainConfig();
+
+}  // namespace drivetrain
+}  // namespace control_loops
+}  // namespace y2016_bot3
+
+#endif  // Y2016_BOT3_CONTROL_LOOPS_DRIVETRAIN_DRIVETRAIN_BASE_H_
diff --git a/y2016_bot3/control_loops/drivetrain/drivetrain_main.cc b/y2016_bot3/control_loops/drivetrain/drivetrain_main.cc
new file mode 100644
index 0000000..3eaccce
--- /dev/null
+++ b/y2016_bot3/control_loops/drivetrain/drivetrain_main.cc
@@ -0,0 +1,15 @@
+#include "aos/linux_code/init.h"
+
+#include "frc971/control_loops/drivetrain/drivetrain.h"
+#include "y2016_bot3/control_loops/drivetrain/drivetrain_base.h"
+
+using ::frc971::control_loops::drivetrain::DrivetrainLoop;
+
+int main() {
+  ::aos::Init();
+  DrivetrainLoop drivetrain(
+      ::y2016_bot3::control_loops::drivetrain::GetDrivetrainConfig());
+  drivetrain.Run();
+  ::aos::Cleanup();
+  return 0;
+}
diff --git a/y2016_bot3/control_loops/intake/BUILD b/y2016_bot3/control_loops/intake/BUILD
new file mode 100644
index 0000000..887a63c
--- /dev/null
+++ b/y2016_bot3/control_loops/intake/BUILD
@@ -0,0 +1,96 @@
+package(default_visibility = ['//visibility:public'])
+
+load('/aos/build/queues', 'queue_library')
+
+queue_library(
+  name = 'intake_queue',
+  srcs = [
+    'intake.q',
+  ],
+  deps = [
+    '//aos/common/controls:control_loop_queues',
+    '//frc971/control_loops:queues',
+  ],
+)
+
+genrule(
+  name = 'genrule_intake',
+  visibility = ['//visibility:private'],
+  cmd = '$(location //y2016_bot3/control_loops/python:intake) $(OUTS)',
+  tools = [
+    '//y2016_bot3/control_loops/python:intake',
+  ],
+  outs = [
+    'intake_plant.h',
+    'intake_plant.cc',
+    'integral_intake_plant.h',
+    'integral_intake_plant.cc',
+  ],
+)
+
+cc_library(
+  name = 'intake_plants',
+  srcs = [
+    'intake_plant.cc',
+    'integral_intake_plant.cc',
+  ],
+  hdrs = [
+    'intake_plant.h',
+    'integral_intake_plant.h',
+  ],
+  deps = [
+    '//frc971/control_loops:state_feedback_loop',
+  ],
+)
+
+cc_library(
+  name = 'intake_lib',
+  srcs = [
+    'intake.cc',
+    'intake_controls.cc',
+  ],
+  hdrs = [
+    'intake.h',
+    'intake_controls.h',
+  ],
+  deps = [
+    ':intake_queue',
+    ':intake_plants',
+    '//aos/common/controls:control_loop',
+    '//aos/common/util:trapezoid_profile',
+    '//aos/common:math',
+    '//y2016_bot3/queues:ball_detector',
+    '//frc971/control_loops:state_feedback_loop',
+    '//frc971/control_loops:simple_capped_state_feedback_loop',
+    '//frc971/zeroing',
+  ],
+)
+
+cc_test(
+  name = 'intake_lib_test',
+  srcs = [
+    'intake_lib_test.cc',
+  ],
+  deps = [
+    ':intake_queue',
+    ':intake_lib',
+    '//aos/testing:googletest',
+    '//aos/common:queues',
+    '//aos/common/controls:control_loop_test',
+    '//aos/common:math',
+    '//aos/common:time',
+    '//frc971/control_loops:position_sensor_sim',
+  ],
+)
+
+cc_binary(
+  name = 'intake',
+  srcs = [
+    'intake_main.cc',
+  ],
+  deps = [
+    '//aos/linux_code:init',
+    ':intake_lib',
+    ':intake_queue',
+  ],
+)
diff --git a/y2016_bot3/control_loops/intake/intake.cc b/y2016_bot3/control_loops/intake/intake.cc
new file mode 100644
index 0000000..5320cd5
--- /dev/null
+++ b/y2016_bot3/control_loops/intake/intake.cc
@@ -0,0 +1,265 @@
+#include "y2016_bot3/control_loops/intake/intake.h"
+#include "y2016_bot3/control_loops/intake/intake_controls.h"
+
+#include "aos/common/commonmath.h"
+#include "aos/common/controls/control_loops.q.h"
+#include "aos/common/logging/logging.h"
+
+#include "y2016_bot3/control_loops/intake/integral_intake_plant.h"
+#include "y2016_bot3/queues/ball_detector.q.h"
+
+namespace y2016_bot3 {
+namespace control_loops {
+namespace intake {
+
+namespace {
+// The maximum voltage the intake roller will be allowed to use.
+constexpr float kMaxIntakeTopVoltage = 12.0;
+constexpr float kMaxIntakeBottomVoltage = 12.0;
+
+}
+// namespace
+
+void LimitChecker::UpdateGoal(double intake_angle_goal) {
+  intake_->set_unprofiled_goal(intake_angle_goal);
+}
+
+Intake::Intake(control_loops::IntakeQueue *intake_queue)
+    : aos::controls::ControlLoop<control_loops::IntakeQueue>(intake_queue),
+      limit_checker_(&intake_) {}
+bool Intake::IsIntakeNear(double tolerance) {
+  return ((intake_.unprofiled_goal() - intake_.X_hat())
+              .block<2, 1>(0, 0)
+              .lpNorm<Eigen::Infinity>() < tolerance);
+}
+
+double Intake::MoveButKeepAbove(double reference_angle, double current_angle,
+                                double move_distance) {
+  return -MoveButKeepBelow(-reference_angle, -current_angle, -move_distance);
+}
+
+double Intake::MoveButKeepBelow(double reference_angle, double current_angle,
+                                double move_distance) {
+  // There are 3 interesting places to move to.
+  const double small_negative_move = current_angle - move_distance;
+  const double small_positive_move = current_angle + move_distance;
+  // And the reference angle.
+
+  // Move the the highest one that is below reference_angle.
+  if (small_negative_move > reference_angle) {
+    return reference_angle;
+  } else if (small_positive_move > reference_angle) {
+    return small_negative_move;
+  } else {
+    return small_positive_move;
+  }
+}
+
+void Intake::RunIteration(const control_loops::IntakeQueue::Goal *unsafe_goal,
+                          const control_loops::IntakeQueue::Position *position,
+                          control_loops::IntakeQueue::Output *output,
+                          control_loops::IntakeQueue::Status *status) {
+  const State state_before_switch = state_;
+  if (WasReset()) {
+    LOG(ERROR, "WPILib reset, restarting\n");
+    intake_.Reset();
+    state_ = UNINITIALIZED;
+  }
+
+  // Bool to track if we should turn the motors on or not.
+  bool disable = output == nullptr;
+
+  intake_.Correct(position->intake);
+
+  // There are 2 main zeroing paths, HIGH_ARM_ZERO and LOW_ARM_ZERO.
+  //
+  // HIGH_ARM_ZERO works by lifting the arm all the way up so it is clear,
+  // moving the shooter to be horizontal, moving the intake out, and then moving
+  // the arm back down.
+  //
+  // LOW_ARM_ZERO works by moving the intake out of the way, lifting the arm up,
+  // leveling the shooter, and then moving back down.
+
+  if (intake_.error()) {
+    state_ = ESTOP;
+  }
+
+  switch (state_) {
+    case UNINITIALIZED:
+      // Wait in the uninitialized state until intake is initialized.
+      LOG(DEBUG, "Uninitialized, waiting for intake\n");
+      if (intake_.initialized()) {
+        state_ = DISABLED_INITIALIZED;
+      }
+      disable = true;
+      break;
+
+    case DISABLED_INITIALIZED:
+      // Wait here until we are either fully zeroed while disabled, or we become
+      // enabled.
+      if (disable) {
+        if (intake_.zeroed()) {
+          state_ = SLOW_RUNNING;
+        }
+      } else {
+        if (intake_.angle() <= kIntakeMiddleAngle) {
+          state_ = ZERO_LIFT_INTAKE;
+        } else {
+          state_ = ZERO_LOWER_INTAKE;
+        }
+      }
+
+      // Set the goals to where we are now so when we start back up, we don't
+      // jump.
+      intake_.ForceGoal(intake_.angle());
+      // Set up the profile to be the zeroing profile.
+      intake_.AdjustProfile(0.5, 10);
+
+      // We are not ready to start doing anything yet.
+      disable = true;
+      break;
+
+    case ZERO_LOWER_INTAKE:
+      if (disable) {
+        state_ = DISABLED_INITIALIZED;
+      } else {
+        intake_.set_unprofiled_goal(kIntakeDownAngle);
+
+        if (IsIntakeNear(kLooseTolerance)) {
+          // Close enough, start the next move.
+          state_ = RUNNING;
+        }
+      }
+      break;
+
+    case ZERO_LIFT_INTAKE:
+      if (disable) {
+        state_ = DISABLED_INITIALIZED;
+      } else {
+        intake_.set_unprofiled_goal(kIntakeUpAngle);
+
+        if (IsIntakeNear(kLooseTolerance)) {
+          // Close enough, start the next move.
+          state_ = RUNNING;
+        }
+      }
+      break;
+
+    // These 4 cases are very similar.
+    case SLOW_RUNNING:
+    case RUNNING: {
+      if (disable) {
+        // If we are disabled, go to slow running if we are collided.
+        // Reset the profile to the current position so it moves well from here.
+        intake_.ForceGoal(intake_.angle());
+      }
+
+      double requested_intake = M_PI / 2.0;
+
+      if (unsafe_goal) {
+        intake_.AdjustProfile(unsafe_goal->max_angular_velocity_intake,
+                              unsafe_goal->max_angular_acceleration_intake);
+
+        requested_intake = unsafe_goal->angle_intake;
+      }
+      //Push the request out to the hardware.
+      limit_checker_.UpdateGoal(requested_intake);
+
+            // ESTOP if we hit the hard limits.
+      if (intake_.CheckHardLimits() && output) {
+        state_ = ESTOP;
+      }
+    } break;
+
+    case ESTOP:
+      LOG(ERROR, "Estop\n");
+      disable = true;
+      break;
+  }
+
+  // Set the voltage limits.
+  const double max_voltage =
+      (state_ == RUNNING) ? kOperatingVoltage : kZeroingVoltage;
+
+  intake_.set_max_voltage(max_voltage);
+
+  // Calculate the loops for a cycle.
+  {
+    Eigen::Matrix<double, 3, 1> error = intake_.controller().error();
+    status->intake.position_power = intake_.controller().K(0, 0) * error(0, 0);
+    status->intake.velocity_power = intake_.controller().K(0, 1) * error(1, 0);
+  }
+
+  intake_.Update(disable);
+
+  // Write out all the voltages.
+  if (output) {
+    output->voltage_intake = intake_.intake_voltage();
+
+    output->voltage_top_rollers = 0.0;
+    output->voltage_bottom_rollers = 0.0;
+
+    if (unsafe_goal) {
+      // Ball detector lights.
+      ::y2016_bot3::sensors::ball_detector.FetchLatest();
+      bool ball_detected = false;
+      if (::y2016_bot3::sensors::ball_detector.get()) {
+        ball_detected = ::y2016_bot3::sensors::ball_detector->voltage > 2.5;
+      }
+
+      // Intake.
+      if (unsafe_goal->force_intake || !ball_detected) {
+        output->voltage_top_rollers = ::std::max(
+            -kMaxIntakeTopVoltage,
+            ::std::min(unsafe_goal->voltage_top_rollers, kMaxIntakeTopVoltage));
+        output->voltage_bottom_rollers =
+            ::std::max(-kMaxIntakeBottomVoltage,
+                       ::std::min(unsafe_goal->voltage_bottom_rollers,
+                                  kMaxIntakeBottomVoltage));
+      } else {
+        output->voltage_top_rollers = 0.0;
+        output->voltage_bottom_rollers = 0.0;
+      }
+
+      // Traverse.
+      output->traverse_unlatched = unsafe_goal->traverse_unlatched;
+      output->traverse_down = unsafe_goal->traverse_down;
+    }
+  }
+
+  // Save debug/internal state.
+  status->zeroed = intake_.zeroed();
+
+  status->intake.angle = intake_.X_hat(0, 0);
+  status->intake.angular_velocity = intake_.X_hat(1, 0);
+  status->intake.goal_angle = intake_.goal(0, 0);
+  status->intake.goal_angular_velocity = intake_.goal(1, 0);
+  status->intake.unprofiled_goal_angle = intake_.unprofiled_goal(0, 0);
+  status->intake.unprofiled_goal_angular_velocity =
+      intake_.unprofiled_goal(1, 0);
+  status->intake.calculated_velocity =
+      (intake_.angle() - last_intake_angle_) / 0.005;
+  status->intake.voltage_error = intake_.X_hat(2, 0);
+  status->intake.estimator_state = intake_.IntakeEstimatorState();
+  status->intake.feedforwards_power = intake_.controller().ff_U(0, 0);
+
+  last_intake_angle_ = intake_.angle();
+
+  status->estopped = (state_ == ESTOP);
+
+  status->state = state_;
+
+  last_state_ = state_before_switch;
+}
+
+constexpr double Intake::kZeroingVoltage;
+constexpr double Intake::kOperatingVoltage;
+constexpr double Intake::kLooseTolerance;
+constexpr double Intake::kTightTolerance;
+constexpr double Intake::kIntakeUpAngle;
+constexpr double Intake::kIntakeMiddleAngle;
+constexpr double Intake::kIntakeDownAngle;
+
+}  // namespace intake
+}  // namespace control_loops
+}  // namespace y2016_bot3
diff --git a/y2016_bot3/control_loops/intake/intake.h b/y2016_bot3/control_loops/intake/intake.h
new file mode 100644
index 0000000..fed17ab
--- /dev/null
+++ b/y2016_bot3/control_loops/intake/intake.h
@@ -0,0 +1,153 @@
+#ifndef Y2016_BOT3_CONTROL_LOOPS_INTAKE_INTAKE_H_
+#define Y2016_BOT3_CONTROL_LOOPS_INTAKE_INTAKE_H_
+
+#include <memory>
+
+#include "aos/common/controls/control_loop.h"
+#include "aos/common/util/trapezoid_profile.h"
+#include "frc971/control_loops/state_feedback_loop.h"
+
+#include "frc971/zeroing/zeroing.h"
+#include "y2016_bot3/control_loops/intake/intake.q.h"
+#include "y2016_bot3/control_loops/intake/intake_controls.h"
+
+namespace y2016_bot3 {
+namespace constants {
+static const int kZeroingSampleSize = 200;
+
+// Ratios for our subsystems.
+// TODO(constants): Update these.
+static constexpr double kIntakeEncoderRatio = 18.0 / 72.0 * 15.0 / 48.0;
+
+static constexpr double kIntakePotRatio = 15.0 / 48.0;
+
+// Difference in radians between index pulses.
+static constexpr double kIntakeEncoderIndexDifference =
+    2.0 * M_PI * kIntakeEncoderRatio;
+
+// Subsystem motion ranges, in whatever units that their respective queues say
+// the use.
+// TODO(constants): Update these.
+static constexpr ::frc971::constants::Range kIntakeRange{// Lower hard stop
+                                                         -0.5,
+                                                         // Upper hard stop
+                                                         2.90,
+                                                         // Lower soft stop
+                                                         -0.300,
+                                                         // Uppper soft stop
+                                                         2.725};
+
+struct IntakeZero {
+  double pot_offset = 0.0;
+  ::frc971::constants::ZeroingConstants zeroing{
+      kZeroingSampleSize, kIntakeEncoderIndexDifference, 0.0, 0.3};
+};
+}  // namespace constants
+namespace control_loops {
+namespace intake {
+namespace testing {
+class IntakeTest_RespectsRange_Test;
+class IntakeTest_DisabledGoalTest_Test;
+class IntakeTest_IntakeZeroingErrorTest_Test;
+class IntakeTest_UpperHardstopStartup_Test;
+class IntakeTest_DisabledWhileZeroingHigh_Test;
+class IntakeTest_DisabledWhileZeroingLow_Test;
+}
+
+class LimitChecker {
+  public:
+    LimitChecker(IntakeArm *intake) : intake_(intake) {}
+    void UpdateGoal(double intake_angle_goal);
+  private:
+    IntakeArm *intake_;
+};
+
+class Intake : public ::aos::controls::ControlLoop<control_loops::IntakeQueue> {
+ public:
+  explicit Intake(
+      control_loops::IntakeQueue *my_intake = &control_loops::intake_queue);
+
+  static constexpr double kZeroingVoltage = 6.0;
+  static constexpr double kOperatingVoltage = 12.0;
+
+  // This is the large scale movement tolerance.
+  static constexpr double kLooseTolerance = 0.05;
+
+  // This is the small scale movement tolerance.
+  static constexpr double kTightTolerance = 0.03;
+
+  static constexpr double kIntakeUpAngle = M_PI / 2;
+
+  static constexpr double kIntakeDownAngle = 0.0;
+
+  static constexpr double kIntakeMiddleAngle =
+      (kIntakeUpAngle + kIntakeDownAngle) / 2;
+
+  enum State {
+    // Wait for all the filters to be ready before starting the initialization
+    // process.
+    UNINITIALIZED = 0,
+
+    // We now are ready to decide how to zero.  Decide what to do once we are
+    // enabled.
+    DISABLED_INITIALIZED = 1,
+
+    ZERO_LOWER_INTAKE = 2,
+
+    ZERO_LIFT_INTAKE = 3,
+    // Run, but limit power to zeroing voltages.
+    SLOW_RUNNING = 12,
+    // Run with full power.
+    RUNNING = 13,
+    // Internal error caused the intake to abort.
+    ESTOP = 16,
+  };
+
+  bool IsRunning() const {
+    return (state_ == SLOW_RUNNING || state_ == RUNNING);
+  }
+
+  State state() const { return state_; }
+
+  // Returns the value to move the joint to such that it will stay below
+  // reference_angle starting at current_angle, but move at least move_distance
+  static double MoveButKeepBelow(double reference_angle, double current_angle,
+                                 double move_distance);
+  // Returns the value to move the joint to such that it will stay above
+  // reference_angle starting at current_angle, but move at least move_distance
+  static double MoveButKeepAbove(double reference_angle, double current_angle,
+                                 double move_distance);
+
+ protected:
+  void RunIteration(const control_loops::IntakeQueue::Goal *unsafe_goal,
+                    const control_loops::IntakeQueue::Position *position,
+                    control_loops::IntakeQueue::Output *output,
+                    control_loops::IntakeQueue::Status *status) override;
+
+ private:
+  friend class testing::IntakeTest_DisabledGoalTest_Test;
+  friend class testing::IntakeTest_IntakeZeroingErrorTest_Test;
+  friend class testing::IntakeTest_RespectsRange_Test;
+  friend class testing::IntakeTest_UpperHardstopStartup_Test;
+  friend class testing::IntakeTest_DisabledWhileZeroingHigh_Test;
+  friend class testing::IntakeTest_DisabledWhileZeroingLow_Test;
+  IntakeArm intake_;
+
+  State state_ = UNINITIALIZED;
+  State last_state_ = UNINITIALIZED;
+
+  float last_intake_angle_ = 0.0;
+  LimitChecker limit_checker_;
+  // Returns true if the profile has finished, and the joint is within the
+  // specified tolerance.
+  bool IsIntakeNear(double tolerance);
+
+  DISALLOW_COPY_AND_ASSIGN(Intake);
+};
+
+
+}  // namespace intake
+}  // namespace control_loops
+}  // namespace y2016_bot3
+
+#endif  // Y2016_BOT3_CONTROL_LOOPS_SUPERSTRUCTURE_SUPERSTRUCTURE_H_
diff --git a/y2016_bot3/control_loops/intake/intake.q b/y2016_bot3/control_loops/intake/intake.q
new file mode 100644
index 0000000..da3edbb
--- /dev/null
+++ b/y2016_bot3/control_loops/intake/intake.q
@@ -0,0 +1,112 @@
+package y2016_bot3.control_loops;
+
+import "aos/common/controls/control_loops.q";
+import "frc971/control_loops/control_loops.q";
+
+struct JointState {
+  // Angle of the joint in radians.
+  float angle;
+  // Angular velocity of the joint in radians/second.
+  float angular_velocity;
+  // Profiled goal angle of the joint in radians.
+  float goal_angle;
+  // Profiled goal angular velocity of the joint in radians/second.
+  float goal_angular_velocity;
+  // Unprofiled goal angle of the joint in radians.
+  float unprofiled_goal_angle;
+  // Unprofiled goal angular velocity of the joint in radians/second.
+  float unprofiled_goal_angular_velocity;
+
+  // The estimated voltage error.
+  float voltage_error;
+
+  // The calculated velocity with delta x/delta t
+  float calculated_velocity;
+
+  // Components of the control loop output
+  float position_power;
+  float velocity_power;
+  float feedforwards_power;
+
+  // State of the estimator.
+  .frc971.EstimatorState estimator_state;
+};
+
+queue_group IntakeQueue {
+  implements aos.control_loops.ControlLoop;
+
+  message Goal {
+    // Zero on the intake is when the horizontal tube stock members are level
+    // with the ground.  This will be essentially when we are in the intaking
+    // position.  Positive is up.  The angle is measured relative to the top
+    // of the robot frame.
+    // Zero on the shoulder is horizontal.  Positive is up.  The angle is
+    // measured relative to the top of the robot frame.
+    // Zero on the wrist is horizontal and landed in the bellypan.  Positive is
+    // the same direction as the shoulder.  The angle is measured relative to
+    // the top of the robot frame.
+
+    // Goal angles and angular velocities of the intake.
+    double angle_intake;
+
+    // Caps on velocity/acceleration for profiling. 0 for the default.
+    float max_angular_velocity_intake;
+
+    float max_angular_acceleration_intake;
+
+    // Voltage to send to the rollers. Positive is sucking in.
+    float voltage_top_rollers;
+    float voltage_bottom_rollers;
+
+    bool force_intake;
+
+    // If true, release the latch which holds the traverse mechanism in the
+    // middle.
+    bool traverse_unlatched;
+    // If true, fire the traverse mechanism down.
+    bool traverse_down;
+  };
+
+  message Status {
+    // Is the intake zeroed?
+    bool zeroed;
+
+    // If true, we have aborted.
+    bool estopped;
+
+    // The internal state of the state machine.
+    int32_t state;
+
+
+    // Estimated angle and angular velocitie of the intake.
+    JointState intake;
+
+    // Is the intake collided?
+    bool is_collided;
+  };
+
+  message Position {
+    // Zero for the intake potentiometer value is horizontal, and positive is
+    // up.
+    .frc971.PotAndIndexPosition intake;
+  };
+
+  message Output {
+    float voltage_intake;
+
+    float voltage_top_rollers;
+    float voltage_bottom_rollers;
+
+    // If true, release the latch to hold the traverse mechanism in the middle.
+    bool traverse_unlatched;
+    // If true, fire the traverse mechanism down.
+    bool traverse_down;
+  };
+
+  queue Goal goal;
+  queue Position position;
+  queue Output output;
+  queue Status status;
+};
+
+queue_group IntakeQueue intake_queue;
diff --git a/y2016_bot3/control_loops/intake/intake_controls.cc b/y2016_bot3/control_loops/intake/intake_controls.cc
new file mode 100644
index 0000000..f5ada8c
--- /dev/null
+++ b/y2016_bot3/control_loops/intake/intake_controls.cc
@@ -0,0 +1,168 @@
+#include "y2016_bot3/control_loops/intake/intake_controls.h"
+
+#include "aos/common/controls/control_loops.q.h"
+#include "aos/common/logging/logging.h"
+
+#include "y2016_bot3/control_loops/intake/integral_intake_plant.h"
+
+#include "y2016_bot3/control_loops/intake/intake.h"
+
+namespace y2016_bot3 {
+namespace constants {
+IntakeZero intake_zero;
+}
+namespace control_loops {
+namespace intake {
+
+using ::frc971::PotAndIndexPosition;
+using ::frc971::EstimatorState;
+
+namespace {
+double UseUnlessZero(double target_value, double default_value) {
+  if (target_value != 0.0) {
+    return target_value;
+  } else {
+    return default_value;
+  }
+}
+}  // namespace
+
+// Intake
+IntakeArm::IntakeArm()
+    : loop_(new ::frc971::control_loops::SimpleCappedStateFeedbackLoop<3, 1, 1>(
+          ::y2016_bot3::control_loops::intake::MakeIntegralIntakeLoop())),
+      estimator_(y2016_bot3::constants::intake_zero.zeroing),
+      profile_(::aos::controls::kLoopFrequency) {
+  Y_.setZero();
+  unprofiled_goal_.setZero();
+  offset_.setZero();
+  AdjustProfile(0.0, 0.0);
+}
+
+void IntakeArm::UpdateIntakeOffset(double offset) {
+  const double doffset = offset - offset_(0, 0);
+  LOG(INFO, "Adjusting Intake offset from %f to %f\n", offset_(0, 0), offset);
+
+  loop_->mutable_X_hat()(0, 0) += doffset;
+  Y_(0, 0) += doffset;
+  loop_->mutable_R(0, 0) += doffset;
+
+  profile_.MoveGoal(doffset);
+  offset_(0, 0) = offset;
+
+  CapGoal("R", &loop_->mutable_R());
+}
+
+void IntakeArm::Correct(PotAndIndexPosition position) {
+  estimator_.UpdateEstimate(position);
+
+  if (estimator_.error()) {
+    LOG(ERROR, "zeroing error with intake_estimator\n");
+    return;
+  }
+
+  if (!initialized_) {
+    if (estimator_.offset_ready()) {
+      UpdateIntakeOffset(estimator_.offset());
+      initialized_ = true;
+    }
+  }
+
+  if (!zeroed_ && estimator_.zeroed()) {
+    UpdateIntakeOffset(estimator_.offset());
+    zeroed_ = true;
+  }
+
+  Y_ << position.encoder;
+  Y_ += offset_;
+  loop_->Correct(Y_);
+}
+
+void IntakeArm::CapGoal(const char *name, Eigen::Matrix<double, 3, 1> *goal) {
+  // Limit the goal to min/max allowable angles.
+  if ((*goal)(0, 0) > y2016_bot3::constants::kIntakeRange.upper) {
+    LOG(WARNING, "Intake goal %s above limit, %f > %f\n", name, (*goal)(0, 0),
+        y2016_bot3::constants::kIntakeRange.upper);
+    (*goal)(0, 0) = y2016_bot3::constants::kIntakeRange.upper;
+  }
+  if ((*goal)(0, 0) < y2016_bot3::constants::kIntakeRange.lower) {
+    LOG(WARNING, "Intake goal %s below limit, %f < %f\n", name, (*goal)(0, 0),
+        y2016_bot3::constants::kIntakeRange.lower);
+    (*goal)(0, 0) = y2016_bot3::constants::kIntakeRange.lower;
+  }
+}
+
+void IntakeArm::ForceGoal(double goal) {
+  set_unprofiled_goal(goal);
+  loop_->mutable_R() = unprofiled_goal_;
+  loop_->mutable_next_R() = loop_->R();
+
+  profile_.MoveCurrentState(loop_->R().block<2, 1>(0, 0));
+}
+
+void IntakeArm::set_unprofiled_goal(double unprofiled_goal) {
+  unprofiled_goal_(0, 0) = unprofiled_goal;
+  unprofiled_goal_(1, 0) = 0.0;
+  unprofiled_goal_(2, 0) = 0.0;
+  CapGoal("unprofiled R", &unprofiled_goal_);
+}
+
+void IntakeArm::Update(bool disable) {
+  if (!disable) {
+    ::Eigen::Matrix<double, 2, 1> goal_state =
+        profile_.Update(unprofiled_goal_(0, 0), unprofiled_goal_(1, 0));
+
+    loop_->mutable_next_R(0, 0) = goal_state(0, 0);
+    loop_->mutable_next_R(1, 0) = goal_state(1, 0);
+    loop_->mutable_next_R(2, 0) = 0.0;
+    CapGoal("next R", &loop_->mutable_next_R());
+  }
+
+  loop_->Update(disable);
+
+  if (!disable && loop_->U(0, 0) != loop_->U_uncapped(0, 0)) {
+    profile_.MoveCurrentState(loop_->R().block<2, 1>(0, 0));
+  }
+}
+
+bool IntakeArm::CheckHardLimits() {
+  // Returns whether hard limits have been exceeded.
+
+  if (angle() > y2016_bot3::constants::kIntakeRange.upper_hard ||
+      angle() < y2016_bot3::constants::kIntakeRange.lower_hard) {
+    LOG(ERROR, "Intake at %f out of bounds [%f, %f], ESTOPing\n", angle(),
+        y2016_bot3::constants::kIntakeRange.lower_hard,
+        y2016_bot3::constants::kIntakeRange.upper_hard);
+    return true;
+  }
+
+  return false;
+}
+
+void IntakeArm::set_max_voltage(double voltage) {
+  loop_->set_max_voltage(0, voltage);
+}
+
+void IntakeArm::AdjustProfile(double max_angular_velocity,
+                              double max_angular_acceleration) {
+  profile_.set_maximum_velocity(UseUnlessZero(max_angular_velocity, 10.0));
+  profile_.set_maximum_acceleration(
+      UseUnlessZero(max_angular_acceleration, 10.0));
+}
+
+void IntakeArm::Reset() {
+  estimator_.Reset();
+  initialized_ = false;
+  zeroed_ = false;
+}
+
+EstimatorState IntakeArm::IntakeEstimatorState() {
+  EstimatorState estimator_state;
+  ::frc971::zeroing::PopulateEstimatorState(estimator_, &estimator_state);
+
+  return estimator_state;
+}
+
+}  // namespace intake
+}  // namespace control_loops
+}  // namespace y2016_bot3
diff --git a/y2016_bot3/control_loops/intake/intake_controls.h b/y2016_bot3/control_loops/intake/intake_controls.h
new file mode 100644
index 0000000..0b2daa0
--- /dev/null
+++ b/y2016_bot3/control_loops/intake/intake_controls.h
@@ -0,0 +1,112 @@
+#ifndef Y2016_BOT3_CONTROL_LOOPS_INTAKE_INTAKE_CONTROLS_H_
+#define Y2016_BOT3_CONTROL_LOOPS_INTAKE_INTAKE_CONTROLS_H_
+
+#include <memory>
+
+#include "aos/common/controls/control_loop.h"
+#include "frc971/control_loops/state_feedback_loop.h"
+#include "frc971/control_loops/simple_capped_state_feedback_loop.h"
+#include "aos/common/util/trapezoid_profile.h"
+
+#include "frc971/zeroing/zeroing.h"
+#include "y2016_bot3/control_loops/intake/intake.q.h"
+
+namespace y2016_bot3 {
+namespace control_loops {
+namespace intake {
+namespace testing {
+class IntakeTest_DisabledGoalTest_Test;
+}  // namespace testing
+
+class IntakeArm {
+ public:
+  IntakeArm();
+  // Returns whether the estimators have been initialized and zeroed.
+  bool initialized() const { return initialized_; }
+  bool zeroed() const { return zeroed_; }
+  // Returns whether an error has occured
+  bool error() const { return estimator_.error(); }
+
+  // Updates our estimator with the latest position.
+  void Correct(::frc971::PotAndIndexPosition position);
+  // Runs the controller and profile generator for a cycle.
+  void Update(bool disabled);
+  // Sets the maximum voltage that will be commanded by the loop.
+  void set_max_voltage(double voltage);
+
+  // Forces the current goal to the provided goal, bypassing the profiler.
+  void ForceGoal(double goal);
+  // Sets the unprofiled goal.  The profiler will generate a profile to go to
+  // this goal.
+  void set_unprofiled_goal(double unprofiled_goal);
+  // Limits our profiles to a max velocity and acceleration for proper motion.
+  void AdjustProfile(double max_angular_velocity,
+                     double max_angular_acceleration);
+
+  // Returns true if we have exceeded any hard limits.
+  bool CheckHardLimits();
+  // Resets the internal state.
+  void Reset();
+
+  // Returns the current internal estimator state for logging.
+  ::frc971::EstimatorState IntakeEstimatorState();
+
+  // Returns the requested intake voltage.
+  double intake_voltage() const { return loop_->U(0, 0); }
+
+  // Returns the current position.
+  double angle() const { return Y_(0, 0); }
+
+  // Returns the controller error.
+  const StateFeedbackLoop<3, 1, 1> &controller() const { return *loop_; }
+
+  // Returns the filtered goal.
+  const Eigen::Matrix<double, 3, 1> &goal() const { return loop_->R(); }
+  double goal(int row, int col) const { return loop_->R(row, col); }
+
+  // Returns the unprofiled goal.
+  const Eigen::Matrix<double, 3, 1> &unprofiled_goal() const {
+    return unprofiled_goal_;
+  }
+  double unprofiled_goal(int row, int col) const {
+    return unprofiled_goal_(row, col);
+  }
+
+  // Returns the current state estimate.
+  const Eigen::Matrix<double, 3, 1> &X_hat() const { return loop_->X_hat(); }
+  double X_hat(int row, int col) const { return loop_->X_hat(row, col); }
+
+  // For testing:
+  // Triggers an estimator error.
+  void TriggerEstimatorError() { estimator_.TriggerError(); }
+
+ private:
+  // Limits the provided goal to the soft limits.  Prints "name" when it fails
+  // to aid debugging.
+  void CapGoal(const char *name, Eigen::Matrix<double, 3, 1> *goal);
+
+  void UpdateIntakeOffset(double offset);
+
+  ::std::unique_ptr<
+      ::frc971::control_loops::SimpleCappedStateFeedbackLoop<3, 1, 1>> loop_;
+
+  ::frc971::zeroing::ZeroingEstimator estimator_;
+  aos::util::TrapezoidProfile profile_;
+
+  // Current measurement.
+  Eigen::Matrix<double, 1, 1> Y_;
+  // Current offset.  Y_ = offset_ + raw_sensor;
+  Eigen::Matrix<double, 1, 1> offset_;
+
+  // The goal that the profile tries to reach.
+  Eigen::Matrix<double, 3, 1> unprofiled_goal_;
+
+  bool initialized_ = false;
+  bool zeroed_ = false;
+};
+
+}  // namespace intake
+}  // namespace control_loops
+}  // namespace y2016_bot3
+
+#endif  // Y2016_CONTROL_LOOPS_SUPERSTRUCTURE_SUPERSTRUCTURE_CONTROLS_H_
diff --git a/y2016_bot3/control_loops/intake/intake_lib_test.cc b/y2016_bot3/control_loops/intake/intake_lib_test.cc
new file mode 100644
index 0000000..43232aa
--- /dev/null
+++ b/y2016_bot3/control_loops/intake/intake_lib_test.cc
@@ -0,0 +1,552 @@
+#include "y2016_bot3/control_loops/intake/intake.h"
+
+#include <unistd.h>
+
+#include <memory>
+
+#include "gtest/gtest.h"
+#include "aos/common/queue.h"
+#include "aos/common/controls/control_loop_test.h"
+#include "aos/common/commonmath.h"
+#include "aos/common/time.h"
+#include "frc971/control_loops/position_sensor_sim.h"
+#include "y2016_bot3/control_loops/intake/intake.q.h"
+#include "y2016_bot3/control_loops/intake/intake_plant.h"
+
+using ::aos::time::Time;
+using ::frc971::control_loops::PositionSensorSimulator;
+
+namespace y2016_bot3 {
+namespace control_loops {
+namespace intake {
+namespace testing {
+
+class IntakePlant : public StateFeedbackPlant<2, 1, 1> {
+ public:
+  explicit IntakePlant(StateFeedbackPlant<2, 1, 1> &&other)
+      : StateFeedbackPlant<2, 1, 1>(::std::move(other)) {}
+
+  void CheckU() override {
+    for (int i = 0; i < kNumInputs; ++i) {
+      assert(U(i, 0) <= U_max(i, 0) + 0.00001 + voltage_offset_);
+      assert(U(i, 0) >= U_min(i, 0) - 0.00001 + voltage_offset_);
+    }
+  }
+
+  double voltage_offset() const { return voltage_offset_; }
+  void set_voltage_offset(double voltage_offset) {
+    voltage_offset_ = voltage_offset;
+  }
+
+ private:
+  double voltage_offset_ = 0.0;
+};
+
+// Class which simulates the intake and sends out queue messages with
+// the position.
+class IntakeSimulation {
+ public:
+  static constexpr double kNoiseScalar = 0.1;
+  IntakeSimulation()
+      : intake_plant_(new IntakePlant(MakeIntakePlant())),
+        pot_encoder_intake_(
+            y2016_bot3::constants::kIntakeEncoderIndexDifference),
+        intake_queue_(".y2016_bot3.control_loops.intake", 0x0,
+                      ".y2016_bot3.control_loops.intake.goal",
+                      ".y2016_bot3.control_loops.intake.status",
+                      ".y2016_bot3.control_loops.intake.output",
+                      ".y2016_bot3.control_loops.intake.status") {
+    InitializeIntakePosition(0.0);
+  }
+
+  void InitializeIntakePosition(double start_pos) {
+    intake_plant_->mutable_X(0, 0) = start_pos;
+    intake_plant_->mutable_X(1, 0) = 0.0;
+
+    pot_encoder_intake_.Initialize(start_pos, kNoiseScalar);
+  }
+
+  // Sends a queue message with the position.
+  void SendPositionMessage() {
+    ::aos::ScopedMessagePtr<control_loops::IntakeQueue::Position> position =
+        intake_queue_.position.MakeMessage();
+
+    pot_encoder_intake_.GetSensorValues(&position->intake);
+
+    position.Send();
+  }
+
+  double intake_angle() const { return intake_plant_->X(0, 0); }
+  double intake_angular_velocity() const { return intake_plant_->X(1, 0); }
+
+  // Sets the difference between the commanded and applied powers.
+  // This lets us test that the integrators work.
+  void set_power_error(double power_error_intake) {
+    intake_plant_->set_voltage_offset(power_error_intake);
+  }
+
+  // Simulates for a single timestep.
+  void Simulate() {
+    EXPECT_TRUE(intake_queue_.output.FetchLatest());
+
+    // Feed voltages into physics simulation.
+    intake_plant_->mutable_U() << intake_queue_.output->voltage_intake +
+                                      intake_plant_->voltage_offset();
+
+    // Verify that the correct power limits are being respected depending on
+    // which mode we are in.
+    EXPECT_TRUE(intake_queue_.status.FetchLatest());
+    if (intake_queue_.status->state == Intake::RUNNING) {
+      CHECK_LE(::std::abs(intake_queue_.output->voltage_intake),
+               Intake::kOperatingVoltage);
+    } else {
+      CHECK_LE(::std::abs(intake_queue_.output->voltage_intake),
+               Intake::kZeroingVoltage);
+    }
+
+    // Use the plant to generate the next physical state given the voltages to
+    // the motors.
+    intake_plant_->Update();
+
+    const double angle_intake = intake_plant_->Y(0, 0);
+
+    // Use the physical state to simulate sensor readings.
+    pot_encoder_intake_.MoveTo(angle_intake);
+
+    // Validate that everything is within range.
+    EXPECT_GE(angle_intake, y2016_bot3::constants::kIntakeRange.lower_hard);
+    EXPECT_LE(angle_intake, y2016_bot3::constants::kIntakeRange.upper_hard);
+  }
+
+ private:
+  ::std::unique_ptr<IntakePlant> intake_plant_;
+
+  PositionSensorSimulator pot_encoder_intake_;
+
+  IntakeQueue intake_queue_;
+};
+
+class IntakeTest : public ::aos::testing::ControlLoopTest {
+ protected:
+  IntakeTest()
+      : intake_queue_(".y2016_bot3.control_loops.intake", 0x0,
+                      ".y2016_bot3.control_loops.intake.goal",
+                      ".y2016_bot3.control_loops.intake.status",
+                      ".y2016_bot3.control_loops.intake.output",
+                      ".y2016_bot3.control_loops.intake.status"),
+        intake_(&intake_queue_),
+        intake_plant_() {}
+
+  void VerifyNearGoal() {
+    intake_queue_.goal.FetchLatest();
+    intake_queue_.status.FetchLatest();
+
+    EXPECT_TRUE(intake_queue_.goal.get() != nullptr);
+    EXPECT_TRUE(intake_queue_.status.get() != nullptr);
+
+    EXPECT_NEAR(intake_queue_.goal->angle_intake,
+                intake_queue_.status->intake.angle, 0.001);
+    EXPECT_NEAR(intake_queue_.goal->angle_intake, intake_plant_.intake_angle(),
+                0.001);
+  }
+
+  // Runs one iteration of the whole simulation
+  void RunIteration(bool enabled = true) {
+    SendMessages(enabled);
+
+    intake_plant_.SendPositionMessage();
+    intake_.Iterate();
+    intake_plant_.Simulate();
+
+    TickTime();
+  }
+
+  // Runs iterations until the specified amount of simulated time has elapsed.
+  void RunForTime(const Time &run_for, bool enabled = true) {
+    const auto start_time = Time::Now();
+    while (Time::Now() < start_time + run_for) {
+      const auto loop_start_time = Time::Now();
+      double begin_intake_velocity = intake_plant_.intake_angular_velocity();
+      RunIteration(enabled);
+      const double loop_time = (Time::Now() - loop_start_time).ToSeconds();
+      const double intake_acceleration =
+          (intake_plant_.intake_angular_velocity() - begin_intake_velocity) /
+          loop_time;
+      EXPECT_GE(peak_intake_acceleration_, intake_acceleration);
+      EXPECT_LE(-peak_intake_acceleration_, intake_acceleration);
+
+      EXPECT_GE(peak_intake_velocity_, intake_plant_.intake_angular_velocity());
+      EXPECT_LE(-peak_intake_velocity_,
+                intake_plant_.intake_angular_velocity());
+    }
+  }
+
+  // Runs iterations while watching the average acceleration per cycle and
+  // making sure it doesn't exceed the provided bounds.
+  void set_peak_intake_acceleration(double value) {
+    peak_intake_acceleration_ = value;
+  }
+  void set_peak_intake_velocity(double value) { peak_intake_velocity_ = value; }
+
+
+
+  // Create a new instance of the test queue so that it invalidates the queue
+  // that it points to.  Otherwise, we will have a pointed to
+  // shared memory that is no longer valid.
+  IntakeQueue intake_queue_;
+
+  // Create a control loop and simulation.
+  Intake intake_;
+  IntakeSimulation intake_plant_;
+
+ private:
+  // The acceleration limits to check for while moving for the 3 axes.
+  double peak_intake_acceleration_ = 1e10;
+  // The velocity limits to check for while moving for the 3 axes.
+  double peak_intake_velocity_ = 1e10;
+};
+
+// Tests that the intake does nothing when the goal is zero.
+TEST_F(IntakeTest, DoesNothing) {
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(0)
+                  .max_angular_velocity_intake(20)
+                  .max_angular_acceleration_intake(20)
+                  .Send());
+
+  // TODO(phil): Send a goal of some sort.
+  RunForTime(Time::InSeconds(5));
+  VerifyNearGoal();
+}
+
+// Tests that the loop can reach a goal.
+TEST_F(IntakeTest, ReachesGoal) {
+  // Set a reasonable goal.
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(M_PI / 4.0)
+                  .max_angular_velocity_intake(20)
+                  .max_angular_acceleration_intake(20)
+                  .Send());
+
+  // Give it a lot of time to get there.
+  RunForTime(Time::InSeconds(8));
+
+  VerifyNearGoal();
+}
+
+// Tests that the loop doesn't try and go beyond the physical range of the
+// mechanisms.
+TEST_F(IntakeTest, RespectsRange) {
+  // Set some ridiculous goals to test upper limits.
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(M_PI * 10)
+                  .max_angular_velocity_intake(20)
+                  .max_angular_acceleration_intake(20)
+                  .Send());
+  RunForTime(Time::InSeconds(10));
+
+  // Check that we are near our soft limit.
+  intake_queue_.status.FetchLatest();
+  EXPECT_NEAR(y2016_bot3::constants::kIntakeRange.upper,
+              intake_queue_.status->intake.angle, 0.001);
+
+
+  // Set some ridiculous goals to test lower limits.
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(-M_PI * 10)
+                  .max_angular_velocity_intake(20)
+                  .max_angular_acceleration_intake(20)
+                  .Send());
+
+  RunForTime(Time::InSeconds(10));
+
+  // Check that we are near our soft limit.
+  intake_queue_.status.FetchLatest();
+  EXPECT_NEAR(y2016_bot3::constants::kIntakeRange.lower,
+              intake_queue_.status->intake.angle, 0.001);
+}
+
+// Tests that the loop zeroes when run for a while.
+TEST_F(IntakeTest, ZeroTest) {
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(y2016_bot3::constants::kIntakeRange.lower)
+                  .max_angular_velocity_intake(20)
+                  .max_angular_acceleration_intake(20)
+                  .Send());
+
+  RunForTime(Time::InSeconds(10));
+
+  VerifyNearGoal();
+}
+
+// Tests that the loop zeroes when run for a while without a goal.
+TEST_F(IntakeTest, ZeroNoGoal) {
+  RunForTime(Time::InSeconds(5));
+
+  EXPECT_EQ(Intake::RUNNING, intake_.state());
+}
+
+// Tests that starting at the lower hardstops doesn't cause an abort.
+TEST_F(IntakeTest, LowerHardstopStartup) {
+  intake_plant_.InitializeIntakePosition(
+      y2016_bot3::constants::kIntakeRange.lower);
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(y2016_bot3::constants::kIntakeRange.upper)
+                  .Send());
+
+  RunForTime(Time::InSeconds(15));
+  VerifyNearGoal();
+}
+
+// Tests that starting at the upper hardstops doesn't cause an abort.
+TEST_F(IntakeTest, UpperHardstopStartup) {
+  intake_plant_.InitializeIntakePosition(
+      y2016_bot3::constants::kIntakeRange.upper);
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(y2016_bot3::constants::kIntakeRange.lower)
+                  .Send());
+
+  RunForTime(Time::InSeconds(15));
+  VerifyNearGoal();
+}
+
+// Tests that resetting WPILib results in a rezero.
+TEST_F(IntakeTest, ResetTest) {
+  intake_plant_.InitializeIntakePosition(
+      y2016_bot3::constants::kIntakeRange.upper);
+
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(y2016_bot3::constants::kIntakeRange.lower + 0.3)
+                  .Send());
+  RunForTime(Time::InSeconds(15));
+
+  EXPECT_EQ(Intake::RUNNING, intake_.state());
+  VerifyNearGoal();
+  SimulateSensorReset();
+  RunForTime(Time::InMS(100));
+  EXPECT_NE(Intake::RUNNING, intake_.state());
+  RunForTime(Time::InMS(10000));
+  EXPECT_EQ(Intake::RUNNING, intake_.state());
+  VerifyNearGoal();
+}
+
+// Tests that the internal goals don't change while disabled.
+TEST_F(IntakeTest, DisabledGoalTest) {
+  ASSERT_TRUE(
+      intake_queue_.goal.MakeWithBuilder()
+          .angle_intake(y2016_bot3::constants::kIntakeRange.lower + 0.03)
+          .Send());
+
+  RunForTime(Time::InMS(100), false);
+  EXPECT_EQ(0.0, intake_.intake_.goal(0, 0));
+
+  // Now make sure they move correctly
+  RunForTime(Time::InMS(4000), true);
+  EXPECT_NE(0.0, intake_.intake_.goal(0, 0));
+}
+
+// Tests that disabling while zeroing at any state restarts from beginning
+TEST_F(IntakeTest, DisabledWhileZeroingHigh) {
+  intake_plant_.InitializeIntakePosition(
+      y2016_bot3::constants::kIntakeRange.upper);
+
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(y2016_bot3::constants::kIntakeRange.upper)
+                  .max_angular_velocity_intake(20)
+                  .max_angular_acceleration_intake(20)
+                  .Send());
+
+  // Expected states to cycle through and check in order.
+  Intake::State ExpectedStateOrder[] = {
+      Intake::DISABLED_INITIALIZED, Intake::ZERO_LOWER_INTAKE};
+
+  // Cycle through until intake_ is initialized in intake.cc
+  while (intake_.state() < Intake::DISABLED_INITIALIZED) {
+    RunIteration(true);
+  }
+
+  static const int kNumberOfStates =
+      sizeof(ExpectedStateOrder) / sizeof(ExpectedStateOrder[0]);
+
+  // Next state when reached to disable
+  for (int i = 0; i < kNumberOfStates; i++) {
+    // Next expected state after being disabled that is expected until next
+    //  state to disable at is reached
+    for (int j = 0; intake_.state() != ExpectedStateOrder[i] && j <= i; j++) {
+      // RunIteration until next expected state is reached with a maximum
+      //  of 10000 times to ensure a breakout
+      for (int o = 0; intake_.state() < ExpectedStateOrder[j] && o < 10000;
+           o++) {
+        RunIteration(true);
+      }
+      EXPECT_EQ(ExpectedStateOrder[j], intake_.state());
+    }
+
+    EXPECT_EQ(ExpectedStateOrder[i], intake_.state());
+
+    // Disable
+    RunIteration(false);
+
+    EXPECT_EQ(Intake::DISABLED_INITIALIZED, intake_.state());
+  }
+
+  RunForTime(Time::InSeconds(10));
+  EXPECT_EQ(Intake::RUNNING, intake_.state());
+}
+
+// Tests that disabling while zeroing at any state restarts from beginning
+TEST_F(IntakeTest, DisabledWhileZeroingLow) {
+  intake_plant_.InitializeIntakePosition(
+      y2016_bot3::constants::kIntakeRange.lower);
+
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(y2016_bot3::constants::kIntakeRange.lower)
+                  .max_angular_velocity_intake(20)
+                  .max_angular_acceleration_intake(20)
+                  .Send());
+
+  // Expected states to cycle through and check in order.
+  Intake::State ExpectedStateOrder[] = {
+      Intake::DISABLED_INITIALIZED, Intake::ZERO_LIFT_INTAKE};
+
+  // Cycle through until intake_ is initialized in intake.cc
+  while (intake_.state() < Intake::DISABLED_INITIALIZED) {
+    RunIteration(true);
+  }
+
+  static const int kNumberOfStates =
+      sizeof(ExpectedStateOrder) / sizeof(ExpectedStateOrder[0]);
+
+  // Next state when reached to disable
+  for (int i = 0; i < kNumberOfStates; i++) {
+    // Next expected state after being disabled that is expected until next
+    //  state to disable at is reached
+    for (int j = 0; intake_.state() != ExpectedStateOrder[i] && j <= i; j++) {
+      // RunIteration until next expected state is reached with a maximum
+      //  of 10000 times to ensure a breakout
+      for (int o = 0; intake_.state() < ExpectedStateOrder[j] && o < 10000;
+           o++) {
+        RunIteration(true);
+      }
+      EXPECT_EQ(ExpectedStateOrder[j], intake_.state());
+    }
+
+    EXPECT_EQ(ExpectedStateOrder[i], intake_.state());
+
+    // Disable
+    RunIteration(false);
+
+    EXPECT_EQ(Intake::DISABLED_INITIALIZED, intake_.state());
+  }
+
+  RunForTime(Time::InSeconds(10));
+  EXPECT_EQ(Intake::RUNNING, intake_.state());
+}
+
+// Tests that MoveButKeepBelow returns sane values.
+TEST_F(IntakeTest, MoveButKeepBelowTest) {
+  EXPECT_EQ(1.0, Intake::MoveButKeepBelow(1.0, 10.0, 1.0));
+  EXPECT_EQ(1.0, Intake::MoveButKeepBelow(1.0, 2.0, 1.0));
+  EXPECT_EQ(0.0, Intake::MoveButKeepBelow(1.0, 1.0, 1.0));
+  EXPECT_EQ(1.0, Intake::MoveButKeepBelow(1.0, 0.0, 1.0));
+}
+
+// Tests that the integrators works.
+TEST_F(IntakeTest, IntegratorTest) {
+  intake_plant_.InitializeIntakePosition(
+      y2016_bot3::constants::kIntakeRange.lower);
+  intake_plant_.set_power_error(1.0);
+  intake_queue_.goal.MakeWithBuilder().angle_intake(0.0).Send();
+
+  RunForTime(Time::InSeconds(8));
+
+  VerifyNearGoal();
+}
+
+// Tests that zeroing while disabled works.  Starts the superstructure near a
+// pulse, lets it initialize, moves it past the pulse, enables, and then make
+// sure it goes to the right spot.
+TEST_F(IntakeTest, DisabledZeroTest) {
+  intake_plant_.InitializeIntakePosition(-0.001);
+
+  intake_queue_.goal.MakeWithBuilder().angle_intake(0.0).Send();
+
+  // Run disabled for 2 seconds
+  RunForTime(Time::InSeconds(2), false);
+  EXPECT_EQ(Intake::DISABLED_INITIALIZED, intake_.state());
+
+  intake_plant_.set_power_error(1.0);
+
+  RunForTime(Time::InSeconds(1), false);
+
+  EXPECT_EQ(Intake::SLOW_RUNNING, intake_.state());
+  RunForTime(Time::InSeconds(2), true);
+
+  VerifyNearGoal();
+}
+
+// Tests that the zeroing errors in the intake are caught
+TEST_F(IntakeTest, IntakeZeroingErrorTest) {
+  RunIteration();
+  EXPECT_NE(Intake::ESTOP, intake_.state());
+  intake_.intake_.TriggerEstimatorError();
+  RunIteration();
+
+  EXPECT_EQ(Intake::ESTOP, intake_.state());
+}
+
+// Tests that the loop respects intake acceleration limits while moving.
+TEST_F(IntakeTest, IntakeAccelerationLimitTest) {
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(0.0)
+                  .max_angular_velocity_intake(20)
+                  .max_angular_acceleration_intake(20)
+                  .Send());
+
+  RunForTime(Time::InSeconds(6));
+  EXPECT_EQ(Intake::RUNNING, intake_.state());
+
+  VerifyNearGoal();
+
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(0.5)
+                  .max_angular_velocity_intake(1)
+                  .max_angular_acceleration_intake(1)
+                  .Send());
+
+  set_peak_intake_acceleration(1.20);
+  RunForTime(Time::InSeconds(4));
+
+  VerifyNearGoal();
+}
+
+// Tests that the loop respects intake handles saturation while accelerating
+// correctly.
+TEST_F(IntakeTest, SaturatedIntakeProfileTest) {
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(0.0)
+                  .max_angular_velocity_intake(20)
+                  .max_angular_acceleration_intake(20)
+                  .Send());
+
+  RunForTime(Time::InSeconds(6));
+  EXPECT_EQ(Intake::RUNNING, intake_.state());
+
+  VerifyNearGoal();
+
+  ASSERT_TRUE(intake_queue_.goal.MakeWithBuilder()
+                  .angle_intake(0.5)
+                  .max_angular_velocity_intake(4.5)
+                  .max_angular_acceleration_intake(800)
+                  .Send());
+
+  set_peak_intake_velocity(4.65);
+  RunForTime(Time::InSeconds(4));
+
+  VerifyNearGoal();
+}
+
+}  // namespace testing
+}  // namespace intake
+}  // namespace control_loops
+}  // namespace frc971
diff --git a/y2016_bot3/control_loops/intake/intake_main.cc b/y2016_bot3/control_loops/intake/intake_main.cc
new file mode 100644
index 0000000..a60f914
--- /dev/null
+++ b/y2016_bot3/control_loops/intake/intake_main.cc
@@ -0,0 +1,11 @@
+#include "y2016_bot3/control_loops/intake/intake.h"
+
+#include "aos/linux_code/init.h"
+
+int main() {
+  ::aos::Init();
+  ::y2016_bot3::control_loops::intake::Intake intake;
+  intake.Run();
+  ::aos::Cleanup();
+  return 0;
+}
diff --git a/y2016_bot3/control_loops/python/BUILD b/y2016_bot3/control_loops/python/BUILD
new file mode 100644
index 0000000..1c2ef63
--- /dev/null
+++ b/y2016_bot3/control_loops/python/BUILD
@@ -0,0 +1,65 @@
+package(default_visibility = ['//y2016_bot3:__subpackages__'])
+
+py_binary(
+  name = 'drivetrain',
+  srcs = [
+    'drivetrain.py',
+  ],
+  deps = [
+    '//external:python-gflags',
+    '//external:python-glog',
+    '//frc971/control_loops/python:controls',
+  ],
+)
+
+py_binary(
+  name = 'polydrivetrain',
+  srcs = [
+    'polydrivetrain.py',
+    'drivetrain.py',
+  ],
+  deps = [
+    '//external:python-gflags',
+    '//external:python-glog',
+    '//frc971/control_loops/python:controls',
+  ],
+)
+
+py_library(
+  name = 'polydrivetrain_lib',
+  srcs = [
+    'polydrivetrain.py',
+    'drivetrain.py',
+  ],
+  deps = [
+    '//external:python-gflags',
+    '//external:python-glog',
+    '//frc971/control_loops/python:controls',
+  ],
+)
+
+py_binary(
+  name = 'intake',
+  srcs = [
+    'intake.py',
+  ],
+  deps = [
+    '//aos/common/util:py_trapezoid_profile',
+    '//external:python-gflags',
+    '//external:python-glog',
+    '//frc971/control_loops/python:controls',
+  ],
+)
+
+py_library(
+  name = 'intake_lib',
+  srcs = [
+    'intake.py',
+  ],
+  deps = [
+    '//aos/common/util:py_trapezoid_profile',
+    '//external:python-gflags',
+    '//external:python-glog',
+    '//frc971/control_loops/python:controls',
+  ],
+)
diff --git a/y2016_bot3/control_loops/python/drivetrain.py b/y2016_bot3/control_loops/python/drivetrain.py
new file mode 100755
index 0000000..5a67416
--- /dev/null
+++ b/y2016_bot3/control_loops/python/drivetrain.py
@@ -0,0 +1,398 @@
+#!/usr/bin/python
+
+from frc971.control_loops.python import control_loop
+from frc971.control_loops.python import controls
+import numpy
+import sys
+import argparse
+from matplotlib import pylab
+
+import gflags
+import glog
+
+FLAGS = gflags.FLAGS
+
+gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+
+class CIM(control_loop.ControlLoop):
+  def __init__(self):
+    super(CIM, self).__init__("CIM")
+    # Stall Torque in N m
+    self.stall_torque = 2.42
+    # Stall Current in Amps
+    self.stall_current = 133
+    # Free Speed in RPM
+    self.free_speed = 4650.0
+    # Free Current in Amps
+    self.free_current = 2.7
+    # Moment of inertia of the CIM in kg m^2
+    self.J = 0.0001
+    # Resistance of the motor, divided by 2 to account for the 2 motors
+    self.resistance = 12.0 / self.stall_current
+    # Motor velocity constant
+    self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
+              (12.0 - self.resistance * self.free_current))
+    # Torque constant
+    self.Kt = self.stall_torque / self.stall_current
+    # Control loop time step
+    self.dt = 0.005
+
+    # State feedback matrices
+    self.A_continuous = numpy.matrix(
+        [[-self.Kt / self.Kv / (self.J * self.resistance)]])
+    self.B_continuous = numpy.matrix(
+        [[self.Kt / (self.J * self.resistance)]])
+    self.C = numpy.matrix([[1]])
+    self.D = numpy.matrix([[0]])
+
+    self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                               self.B_continuous, self.dt)
+
+    self.PlaceControllerPoles([0.01])
+    self.PlaceObserverPoles([0.01])
+
+    self.U_max = numpy.matrix([[12.0]])
+    self.U_min = numpy.matrix([[-12.0]])
+
+    self.InitializeState()
+
+
+class Drivetrain(control_loop.ControlLoop):
+  def __init__(self, name="Drivetrain", left_low=True, right_low=True):
+    super(Drivetrain, self).__init__(name)
+    # Number of motors per side
+    self.num_motors = 2
+    # Stall Torque in N m
+    self.stall_torque = 2.42 * self.num_motors * 0.60
+    # Stall Current in Amps
+    self.stall_current = 133.0 * self.num_motors
+    # Free Speed in RPM. Used number from last year.
+    self.free_speed = 5500.0
+    # Free Current in Amps
+    self.free_current = 4.7 * self.num_motors
+    # Moment of inertia of the drivetrain in kg m^2
+    self.J = 2.0
+    # Mass of the robot, in kg.
+    self.m = 68
+    # Radius of the robot, in meters (requires tuning by hand)
+    self.rb = 0.601 / 2.0
+    # Radius of the wheels, in meters.
+    self.r = 0.097155 * 0.9811158901447808 / 118.0 * 115.75
+    # Resistance of the motor, divided by the number of motors.
+    self.resistance = 12.0 / self.stall_current
+    # Motor velocity constant
+    self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
+               (12.0 - self.resistance * self.free_current))
+    # Torque constant
+    self.Kt = self.stall_torque / self.stall_current
+    # Gear ratios
+    self.G_low = 14.0 / 48.0 * 18.0 / 60.0 * 18.0 / 36.0
+    self.G_high = 14.0 / 48.0 * 28.0 / 50.0 * 18.0 / 36.0
+    if left_low:
+      self.Gl = self.G_low
+    else:
+      self.Gl = self.G_high
+    if right_low:
+      self.Gr = self.G_low
+    else:
+      self.Gr = self.G_high
+
+    # Control loop time step
+    self.dt = 0.005
+
+    # These describe the way that a given side of a robot will be influenced
+    # by the other side. Units of 1 / kg.
+    self.msp = 1.0 / self.m + self.rb * self.rb / self.J
+    self.msn = 1.0 / self.m - self.rb * self.rb / self.J
+    # The calculations which we will need for A and B.
+    self.tcl = -self.Kt / self.Kv / (self.Gl * self.Gl * self.resistance * self.r * self.r)
+    self.tcr = -self.Kt / self.Kv / (self.Gr * self.Gr * self.resistance * self.r * self.r)
+    self.mpl = self.Kt / (self.Gl * self.resistance * self.r)
+    self.mpr = self.Kt / (self.Gr * self.resistance * self.r)
+
+    # State feedback matrices
+    # X will be of the format
+    # [[positionl], [velocityl], [positionr], velocityr]]
+    self.A_continuous = numpy.matrix(
+        [[0, 1, 0, 0],
+         [0, self.msp * self.tcl, 0, self.msn * self.tcr],
+         [0, 0, 0, 1],
+         [0, self.msn * self.tcl, 0, self.msp * self.tcr]])
+    self.B_continuous = numpy.matrix(
+        [[0, 0],
+         [self.msp * self.mpl, self.msn * self.mpr],
+         [0, 0],
+         [self.msn * self.mpl, self.msp * self.mpr]])
+    self.C = numpy.matrix([[1, 0, 0, 0],
+                           [0, 0, 1, 0]])
+    self.D = numpy.matrix([[0, 0],
+                           [0, 0]])
+
+    self.A, self.B = self.ContinuousToDiscrete(
+        self.A_continuous, self.B_continuous, self.dt)
+
+    if left_low or right_low:
+      q_pos = 0.12
+      q_vel = 1.0
+    else:
+      q_pos = 0.14
+      q_vel = 0.95
+
+    self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0, 0.0, 0.0],
+                           [0.0, (1.0 / (q_vel ** 2.0)), 0.0, 0.0],
+                           [0.0, 0.0, (1.0 / (q_pos ** 2.0)), 0.0],
+                           [0.0, 0.0, 0.0, (1.0 / (q_vel ** 2.0))]])
+
+    self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0)), 0.0],
+                           [0.0, (1.0 / (12.0 ** 2.0))]])
+    self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
+
+    glog.debug('DT q_pos %f q_vel %s %s', q_pos, q_vel, name)
+    glog.debug(str(numpy.linalg.eig(self.A - self.B * self.K)[0]))
+    glog.debug('K %s', repr(self.K))
+
+    self.hlp = 0.3
+    self.llp = 0.4
+    self.PlaceObserverPoles([self.hlp, self.hlp, self.llp, self.llp])
+
+    self.U_max = numpy.matrix([[12.0], [12.0]])
+    self.U_min = numpy.matrix([[-12.0], [-12.0]])
+
+    self.InitializeState()
+
+
+class KFDrivetrain(Drivetrain):
+  def __init__(self, name="KFDrivetrain", left_low=True, right_low=True):
+    super(KFDrivetrain, self).__init__(name, left_low, right_low)
+
+    self.unaugmented_A_continuous = self.A_continuous
+    self.unaugmented_B_continuous = self.B_continuous
+
+    # The states are
+    # The practical voltage applied to the wheels is
+    #   V_left = U_left + left_voltage_error
+    #
+    # [left position, left velocity, right position, right velocity,
+    #  left voltage error, right voltage error, angular_error]
+    #
+    # The left and right positions are filtered encoder positions and are not
+    # adjusted for heading error.
+    # The turn velocity as computed by the left and right velocities is
+    # adjusted by the gyro velocity.
+    # The angular_error is the angular velocity error between the wheel speed
+    # and the gyro speed.
+    self.A_continuous = numpy.matrix(numpy.zeros((7, 7)))
+    self.B_continuous = numpy.matrix(numpy.zeros((7, 2)))
+    self.A_continuous[0:4,0:4] = self.unaugmented_A_continuous
+    self.A_continuous[0:4,4:6] = self.unaugmented_B_continuous
+    self.B_continuous[0:4,0:2] = self.unaugmented_B_continuous
+    self.A_continuous[0,6] = 1
+    self.A_continuous[2,6] = -1
+
+    self.A, self.B = self.ContinuousToDiscrete(
+        self.A_continuous, self.B_continuous, self.dt)
+
+    self.C = numpy.matrix([[1, 0, 0, 0, 0, 0, 0],
+                           [0, 0, 1, 0, 0, 0, 0],
+                           [0, -0.5 / self.rb, 0, 0.5 / self.rb, 0, 0, 0]])
+
+    self.D = numpy.matrix([[0, 0],
+                           [0, 0],
+                           [0, 0]])
+
+    q_pos = 0.05
+    q_vel = 1.00
+    q_voltage = 10.0
+    q_encoder_uncertainty = 2.00
+
+    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
+                           [0.0, (q_vel ** 2.0), 0.0, 0.0, 0.0, 0.0, 0.0],
+                           [0.0, 0.0, (q_pos ** 2.0), 0.0, 0.0, 0.0, 0.0],
+                           [0.0, 0.0, 0.0, (q_vel ** 2.0), 0.0, 0.0, 0.0],
+                           [0.0, 0.0, 0.0, 0.0, (q_voltage ** 2.0), 0.0, 0.0],
+                           [0.0, 0.0, 0.0, 0.0, 0.0, (q_voltage ** 2.0), 0.0],
+                           [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, (q_encoder_uncertainty ** 2.0)]])
+
+    r_pos =  0.0001
+    r_gyro = 0.000001
+    self.R = numpy.matrix([[(r_pos ** 2.0), 0.0, 0.0],
+                           [0.0, (r_pos ** 2.0), 0.0],
+                           [0.0, 0.0, (r_gyro ** 2.0)]])
+
+    # Solving for kf gains.
+    self.KalmanGain, self.Q_steady = controls.kalman(
+        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+
+    self.L = self.A * self.KalmanGain
+
+    unaug_K = self.K
+
+    # Implement a nice closed loop controller for use by the closed loop
+    # controller.
+    self.K = numpy.matrix(numpy.zeros((self.B.shape[1], self.A.shape[0])))
+    self.K[0:2, 0:4] = unaug_K
+    self.K[0, 4] = 1.0
+    self.K[1, 5] = 1.0
+
+    self.Qff = numpy.matrix(numpy.zeros((4, 4)))
+    qff_pos = 0.005
+    qff_vel = 1.00
+    self.Qff[0, 0] = 1.0 / qff_pos ** 2.0
+    self.Qff[1, 1] = 1.0 / qff_vel ** 2.0
+    self.Qff[2, 2] = 1.0 / qff_pos ** 2.0
+    self.Qff[3, 3] = 1.0 / qff_vel ** 2.0
+    self.Kff = numpy.matrix(numpy.zeros((2, 7)))
+    self.Kff[0:2, 0:4] = controls.TwoStateFeedForwards(self.B[0:4,:], self.Qff)
+
+    self.InitializeState()
+
+
+def main(argv):
+  argv = FLAGS(argv)
+  glog.init()
+
+  # Simulate the response of the system to a step input.
+  drivetrain = Drivetrain(left_low=False, right_low=False)
+  simulated_left = []
+  simulated_right = []
+  for _ in xrange(100):
+    drivetrain.Update(numpy.matrix([[12.0], [12.0]]))
+    simulated_left.append(drivetrain.X[0, 0])
+    simulated_right.append(drivetrain.X[2, 0])
+
+  if FLAGS.plot:
+    pylab.plot(range(100), simulated_left)
+    pylab.plot(range(100), simulated_right)
+    pylab.suptitle('Acceleration Test')
+    pylab.show()
+
+  # Simulate forwards motion.
+  drivetrain = Drivetrain(left_low=False, right_low=False)
+  close_loop_left = []
+  close_loop_right = []
+  left_power = []
+  right_power = []
+  R = numpy.matrix([[1.0], [0.0], [1.0], [0.0]])
+  for _ in xrange(300):
+    U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
+                   drivetrain.U_min, drivetrain.U_max)
+    drivetrain.UpdateObserver(U)
+    drivetrain.Update(U)
+    close_loop_left.append(drivetrain.X[0, 0])
+    close_loop_right.append(drivetrain.X[2, 0])
+    left_power.append(U[0, 0])
+    right_power.append(U[1, 0])
+
+  if FLAGS.plot:
+    pylab.plot(range(300), close_loop_left, label='left position')
+    pylab.plot(range(300), close_loop_right, label='right position')
+    pylab.plot(range(300), left_power, label='left power')
+    pylab.plot(range(300), right_power, label='right power')
+    pylab.suptitle('Linear Move')
+    pylab.legend()
+    pylab.show()
+
+  # Try turning in place
+  drivetrain = Drivetrain()
+  close_loop_left = []
+  close_loop_right = []
+  R = numpy.matrix([[-1.0], [0.0], [1.0], [0.0]])
+  for _ in xrange(100):
+    U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
+                   drivetrain.U_min, drivetrain.U_max)
+    drivetrain.UpdateObserver(U)
+    drivetrain.Update(U)
+    close_loop_left.append(drivetrain.X[0, 0])
+    close_loop_right.append(drivetrain.X[2, 0])
+
+  if FLAGS.plot:
+    pylab.plot(range(100), close_loop_left)
+    pylab.plot(range(100), close_loop_right)
+    pylab.suptitle('Angular Move')
+    pylab.show()
+
+  # Try turning just one side.
+  drivetrain = Drivetrain()
+  close_loop_left = []
+  close_loop_right = []
+  R = numpy.matrix([[0.0], [0.0], [1.0], [0.0]])
+  for _ in xrange(100):
+    U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
+                   drivetrain.U_min, drivetrain.U_max)
+    drivetrain.UpdateObserver(U)
+    drivetrain.Update(U)
+    close_loop_left.append(drivetrain.X[0, 0])
+    close_loop_right.append(drivetrain.X[2, 0])
+
+  if FLAGS.plot:
+    pylab.plot(range(100), close_loop_left)
+    pylab.plot(range(100), close_loop_right)
+    pylab.suptitle('Pivot')
+    pylab.show()
+
+  # Write the generated constants out to a file.
+  drivetrain_low_low = Drivetrain(
+      name="DrivetrainLowLow", left_low=True, right_low=True)
+  drivetrain_low_high = Drivetrain(
+      name="DrivetrainLowHigh", left_low=True, right_low=False)
+  drivetrain_high_low = Drivetrain(
+      name="DrivetrainHighLow", left_low=False, right_low=True)
+  drivetrain_high_high = Drivetrain(
+      name="DrivetrainHighHigh", left_low=False, right_low=False)
+
+  kf_drivetrain_low_low = KFDrivetrain(
+      name="KFDrivetrainLowLow", left_low=True, right_low=True)
+  kf_drivetrain_low_high = KFDrivetrain(
+      name="KFDrivetrainLowHigh", left_low=True, right_low=False)
+  kf_drivetrain_high_low = KFDrivetrain(
+      name="KFDrivetrainHighLow", left_low=False, right_low=True)
+  kf_drivetrain_high_high = KFDrivetrain(
+      name="KFDrivetrainHighHigh", left_low=False, right_low=False)
+
+  if len(argv) != 5:
+    print "Expected .h file name and .cc file name"
+  else:
+    namespaces = ['y2016_bot3', 'control_loops', 'drivetrain']
+    dog_loop_writer = control_loop.ControlLoopWriter(
+        "Drivetrain", [drivetrain_low_low, drivetrain_low_high,
+                       drivetrain_high_low, drivetrain_high_high],
+        namespaces = namespaces)
+    dog_loop_writer.AddConstant(control_loop.Constant("kDt", "%f",
+          drivetrain_low_low.dt))
+    dog_loop_writer.AddConstant(control_loop.Constant("kStallTorque", "%f",
+          drivetrain_low_low.stall_torque))
+    dog_loop_writer.AddConstant(control_loop.Constant("kStallCurrent", "%f",
+          drivetrain_low_low.stall_current))
+    dog_loop_writer.AddConstant(control_loop.Constant("kFreeSpeedRPM", "%f",
+          drivetrain_low_low.free_speed))
+    dog_loop_writer.AddConstant(control_loop.Constant("kFreeCurrent", "%f",
+          drivetrain_low_low.free_current))
+    dog_loop_writer.AddConstant(control_loop.Constant("kJ", "%f",
+          drivetrain_low_low.J))
+    dog_loop_writer.AddConstant(control_loop.Constant("kMass", "%f",
+          drivetrain_low_low.m))
+    dog_loop_writer.AddConstant(control_loop.Constant("kRobotRadius", "%f",
+          drivetrain_low_low.rb))
+    dog_loop_writer.AddConstant(control_loop.Constant("kWheelRadius", "%f",
+          drivetrain_low_low.r))
+    dog_loop_writer.AddConstant(control_loop.Constant("kR", "%f",
+          drivetrain_low_low.resistance))
+    dog_loop_writer.AddConstant(control_loop.Constant("kV", "%f",
+          drivetrain_low_low.Kv))
+    dog_loop_writer.AddConstant(control_loop.Constant("kT", "%f",
+          drivetrain_low_low.Kt))
+    dog_loop_writer.AddConstant(control_loop.Constant("kLowGearRatio", "%f",
+          drivetrain_low_low.G_low))
+    dog_loop_writer.AddConstant(control_loop.Constant("kHighGearRatio", "%f",
+          drivetrain_high_high.G_high))
+
+    dog_loop_writer.Write(argv[1], argv[2])
+
+    kf_loop_writer = control_loop.ControlLoopWriter(
+        "KFDrivetrain", [kf_drivetrain_low_low, kf_drivetrain_low_high,
+                         kf_drivetrain_high_low, kf_drivetrain_high_high],
+        namespaces = namespaces)
+    kf_loop_writer.Write(argv[3], argv[4])
+
+if __name__ == '__main__':
+  sys.exit(main(sys.argv))
diff --git a/y2016_bot3/control_loops/python/intake.py b/y2016_bot3/control_loops/python/intake.py
new file mode 100755
index 0000000..fa34063
--- /dev/null
+++ b/y2016_bot3/control_loops/python/intake.py
@@ -0,0 +1,314 @@
+#!/usr/bin/python
+
+from aos.common.util.trapezoid_profile import TrapezoidProfile
+from frc971.control_loops.python import control_loop
+from frc971.control_loops.python import controls
+import numpy
+import sys
+import matplotlib
+from matplotlib import pylab
+import gflags
+import glog
+
+FLAGS = gflags.FLAGS
+
+try:
+  gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+except gflags.DuplicateFlagError:
+  pass
+
+class Intake(control_loop.ControlLoop):
+  def __init__(self, name="Intake"):
+    super(Intake, self).__init__(name)
+    # TODO(constants): Update all of these & retune poles.
+    # Stall Torque in N m
+    self.stall_torque = 0.71
+    # Stall Current in Amps
+    self.stall_current = 134
+    # Free Speed in RPM
+    self.free_speed = 18730
+    # Free Current in Amps
+    self.free_current = 0.7
+
+    # Resistance of the motor
+    self.R = 12.0 / self.stall_current
+    # Motor velocity constant
+    self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
+               (12.0 - self.R * self.free_current))
+    # Torque constant
+    self.Kt = self.stall_torque / self.stall_current
+    # Gear ratio
+    self.G = (56.0 / 12.0) * (54.0 / 14.0) * (64.0 / 18.0) * (48.0 / 16.0)
+
+    # Moment of inertia, measured in CAD.
+    # Extra mass to compensate for friction is added on.
+    self.J = 0.34 + 0.40
+
+    # Control loop time step
+    self.dt = 0.005
+
+    # State is [position, velocity]
+    # Input is [Voltage]
+
+    C1 = self.G * self.G * self.Kt / (self.R  * self.J * self.Kv)
+    C2 = self.Kt * self.G / (self.J * self.R)
+
+    self.A_continuous = numpy.matrix(
+        [[0, 1],
+         [0, -C1]])
+
+    # Start with the unmodified input
+    self.B_continuous = numpy.matrix(
+        [[0],
+         [C2]])
+
+    self.C = numpy.matrix([[1, 0]])
+    self.D = numpy.matrix([[0]])
+
+    self.A, self.B = self.ContinuousToDiscrete(
+        self.A_continuous, self.B_continuous, self.dt)
+
+    controllability = controls.ctrb(self.A, self.B)
+
+    glog.debug("Free speed is %f", self.free_speed * numpy.pi * 2.0 / 60.0 / self.G)
+
+    q_pos = 0.20
+    q_vel = 5.0
+    self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0],
+                           [0.0, (1.0 / (q_vel ** 2.0))]])
+
+    self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0))]])
+    self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
+
+    q_pos_ff = 0.005
+    q_vel_ff = 1.0
+    self.Qff = numpy.matrix([[(1.0 / (q_pos_ff ** 2.0)), 0.0],
+                             [0.0, (1.0 / (q_vel_ff ** 2.0))]])
+
+    self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
+
+    glog.debug('K %s', repr(self.K))
+    glog.debug('Poles are %s',
+              repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
+
+    self.rpl = 0.30
+    self.ipl = 0.10
+    self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
+                             self.rpl - 1j * self.ipl])
+
+    glog.debug('L is %s', repr(self.L))
+
+    q_pos = 0.10
+    q_vel = 1.65
+    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0],
+                           [0.0, (q_vel ** 2.0)]])
+
+    r_volts = 0.025
+    self.R = numpy.matrix([[(r_volts ** 2.0)]])
+
+    self.KalmanGain, self.Q_steady = controls.kalman(
+        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+
+    glog.debug('Kal %s', repr(self.KalmanGain))
+    self.L = self.A * self.KalmanGain
+    glog.debug('KalL is %s', repr(self.L))
+
+    # The box formed by U_min and U_max must encompass all possible values,
+    # or else Austin's code gets angry.
+    self.U_max = numpy.matrix([[12.0]])
+    self.U_min = numpy.matrix([[-12.0]])
+
+    self.InitializeState()
+
+class IntegralIntake(Intake):
+  def __init__(self, name="IntegralIntake"):
+    super(IntegralIntake, self).__init__(name=name)
+
+    self.A_continuous_unaugmented = self.A_continuous
+    self.B_continuous_unaugmented = self.B_continuous
+
+    self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
+    self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
+    self.A_continuous[0:2, 2] = self.B_continuous_unaugmented
+
+    self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
+    self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
+
+    self.C_unaugmented = self.C
+    self.C = numpy.matrix(numpy.zeros((1, 3)))
+    self.C[0:1, 0:2] = self.C_unaugmented
+
+    self.A, self.B = self.ContinuousToDiscrete(
+        self.A_continuous, self.B_continuous, self.dt)
+
+    q_pos = 0.12
+    q_vel = 2.00
+    q_voltage = 4.0
+    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0],
+                           [0.0, (q_vel ** 2.0), 0.0],
+                           [0.0, 0.0, (q_voltage ** 2.0)]])
+
+    r_pos = 0.05
+    self.R = numpy.matrix([[(r_pos ** 2.0)]])
+
+    self.KalmanGain, self.Q_steady = controls.kalman(
+        A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+    self.L = self.A * self.KalmanGain
+
+    self.K_unaugmented = self.K
+    self.K = numpy.matrix(numpy.zeros((1, 3)))
+    self.K[0, 0:2] = self.K_unaugmented
+    self.K[0, 2] = 1
+
+    self.Kff = numpy.concatenate((self.Kff, numpy.matrix(numpy.zeros((1, 1)))), axis=1)
+
+    self.InitializeState()
+
+class ScenarioPlotter(object):
+  def __init__(self):
+    # Various lists for graphing things.
+    self.t = []
+    self.x = []
+    self.v = []
+    self.a = []
+    self.x_hat = []
+    self.u = []
+    self.offset = []
+
+  def run_test(self, intake, end_goal,
+             controller_intake,
+             observer_intake=None,
+             iterations=200):
+    """Runs the intake plant with an initial condition and goal.
+
+      Args:
+        intake: intake object to use.
+        end_goal: end_goal state.
+        controller_intake: Intake object to get K from, or None if we should
+            use intake.
+        observer_intake: Intake object to use for the observer, or None if we should
+            use the actual state.
+        iterations: Number of timesteps to run the model for.
+    """
+
+    if controller_intake is None:
+      controller_intake = intake
+
+    vbat = 12.0
+
+    if self.t:
+      initial_t = self.t[-1] + intake.dt
+    else:
+      initial_t = 0
+
+    goal = numpy.concatenate((intake.X, numpy.matrix(numpy.zeros((1, 1)))), axis=0)
+
+    profile = TrapezoidProfile(intake.dt)
+    profile.set_maximum_acceleration(70.0)
+    profile.set_maximum_velocity(10.0)
+    profile.SetGoal(goal[0, 0])
+
+    U_last = numpy.matrix(numpy.zeros((1, 1)))
+    for i in xrange(iterations):
+      observer_intake.Y = intake.Y
+      observer_intake.CorrectObserver(U_last)
+
+      self.offset.append(observer_intake.X_hat[2, 0])
+      self.x_hat.append(observer_intake.X_hat[0, 0])
+
+      next_goal = numpy.concatenate(
+          (profile.Update(end_goal[0, 0], end_goal[1, 0]),
+           numpy.matrix(numpy.zeros((1, 1)))),
+          axis=0)
+
+      ff_U = controller_intake.Kff * (next_goal - observer_intake.A * goal)
+
+      U_uncapped = controller_intake.K * (goal - observer_intake.X_hat) + ff_U
+      U = U_uncapped.copy()
+      U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
+      self.x.append(intake.X[0, 0])
+
+      if self.v:
+        last_v = self.v[-1]
+      else:
+        last_v = 0
+
+      self.v.append(intake.X[1, 0])
+      self.a.append((self.v[-1] - last_v) / intake.dt)
+
+      offset = 0.0
+      if i > 100:
+        offset = 2.0
+      intake.Update(U + offset)
+
+      observer_intake.PredictObserver(U)
+
+      self.t.append(initial_t + i * intake.dt)
+      self.u.append(U[0, 0])
+
+      ff_U -= U_uncapped - U
+      goal = controller_intake.A * goal + controller_intake.B * ff_U
+
+      if U[0, 0] != U_uncapped[0, 0]:
+        profile.MoveCurrentState(
+            numpy.matrix([[goal[0, 0]], [goal[1, 0]]]))
+
+    glog.debug('Time: %f', self.t[-1])
+    glog.debug('goal_error %s', repr(end_goal - goal))
+    glog.debug('error %s', repr(observer_intake.X_hat - end_goal))
+
+  def Plot(self):
+    pylab.subplot(3, 1, 1)
+    pylab.plot(self.t, self.x, label='x')
+    pylab.plot(self.t, self.x_hat, label='x_hat')
+    pylab.legend()
+
+    pylab.subplot(3, 1, 2)
+    pylab.plot(self.t, self.u, label='u')
+    pylab.plot(self.t, self.offset, label='voltage_offset')
+    pylab.legend()
+
+    pylab.subplot(3, 1, 3)
+    pylab.plot(self.t, self.a, label='a')
+    pylab.legend()
+
+    pylab.show()
+
+
+def main(argv):
+  argv = FLAGS(argv)
+  glog.init()
+
+  scenario_plotter = ScenarioPlotter()
+
+  intake = Intake()
+  intake_controller = IntegralIntake()
+  observer_intake = IntegralIntake()
+
+  # Test moving the intake with constant separation.
+  initial_X = numpy.matrix([[0.0], [0.0]])
+  R = numpy.matrix([[numpy.pi/2.0], [0.0], [0.0]])
+  scenario_plotter.run_test(intake, end_goal=R,
+                            controller_intake=intake_controller,
+                            observer_intake=observer_intake, iterations=200)
+
+  if FLAGS.plot:
+    scenario_plotter.Plot()
+
+  # Write the generated constants out to a file.
+  if len(argv) != 5:
+    glog.fatal('Expected .h file name and .cc file name for the intake and integral intake.')
+  else:
+    namespaces = ['y2016_bot3', 'control_loops', 'intake']
+    intake = Intake("Intake")
+    loop_writer = control_loop.ControlLoopWriter('Intake', [intake],
+                                                 namespaces=namespaces)
+    loop_writer.Write(argv[1], argv[2])
+
+    integral_intake = IntegralIntake("IntegralIntake")
+    integral_loop_writer = control_loop.ControlLoopWriter("IntegralIntake", [integral_intake],
+                                                          namespaces=namespaces)
+    integral_loop_writer.Write(argv[3], argv[4])
+
+if __name__ == '__main__':
+  sys.exit(main(sys.argv))
diff --git a/y2016_bot3/control_loops/python/polydrivetrain.py b/y2016_bot3/control_loops/python/polydrivetrain.py
new file mode 100755
index 0000000..ac85bb6
--- /dev/null
+++ b/y2016_bot3/control_loops/python/polydrivetrain.py
@@ -0,0 +1,501 @@
+#!/usr/bin/python
+
+import numpy
+import sys
+from frc971.control_loops.python import polytope
+from y2016_bot3.control_loops.python import drivetrain
+from frc971.control_loops.python import control_loop
+from frc971.control_loops.python import controls
+from matplotlib import pylab
+
+import gflags
+import glog
+
+__author__ = 'Austin Schuh (austin.linux@gmail.com)'
+
+FLAGS = gflags.FLAGS
+
+try:
+  gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+except gflags.DuplicateFlagError:
+  pass
+
+def CoerceGoal(region, K, w, R):
+  """Intersects a line with a region, and finds the closest point to R.
+
+  Finds a point that is closest to R inside the region, and on the line
+  defined by K X = w.  If it is not possible to find a point on the line,
+  finds a point that is inside the region and closest to the line.  This
+  function assumes that
+
+  Args:
+    region: HPolytope, the valid goal region.
+    K: numpy.matrix (2 x 1), the matrix for the equation [K1, K2] [x1; x2] = w
+    w: float, the offset in the equation above.
+    R: numpy.matrix (2 x 1), the point to be closest to.
+
+  Returns:
+    numpy.matrix (2 x 1), the point.
+  """
+  return DoCoerceGoal(region, K, w, R)[0]
+
+def DoCoerceGoal(region, K, w, R):
+  if region.IsInside(R):
+    return (R, True)
+
+  perpendicular_vector = K.T / numpy.linalg.norm(K)
+  parallel_vector = numpy.matrix([[perpendicular_vector[1, 0]],
+                                  [-perpendicular_vector[0, 0]]])
+
+  # We want to impose the constraint K * X = w on the polytope H * X <= k.
+  # We do this by breaking X up into parallel and perpendicular components to
+  # the half plane.  This gives us the following equation.
+  #
+  #  parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) = X
+  #
+  # Then, substitute this into the polytope.
+  #
+  #  H * (parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) <= k
+  #
+  # Substitute K * X = w
+  #
+  # H * parallel * (parallel.T \dot X) + H * perpendicular * w <= k
+  #
+  # Move all the knowns to the right side.
+  #
+  # H * parallel * ([parallel1 parallel2] * X) <= k - H * perpendicular * w
+  #
+  # Let t = parallel.T \dot X, the component parallel to the surface.
+  #
+  # H * parallel * t <= k - H * perpendicular * w
+  #
+  # This is a polytope which we can solve, and use to figure out the range of X
+  # that we care about!
+
+  t_poly = polytope.HPolytope(
+      region.H * parallel_vector,
+      region.k - region.H * perpendicular_vector * w)
+
+  vertices = t_poly.Vertices()
+
+  if vertices.shape[0]:
+    # The region exists!
+    # Find the closest vertex
+    min_distance = numpy.infty
+    closest_point = None
+    for vertex in vertices:
+      point = parallel_vector * vertex + perpendicular_vector * w
+      length = numpy.linalg.norm(R - point)
+      if length < min_distance:
+        min_distance = length
+        closest_point = point
+
+    return (closest_point, True)
+  else:
+    # Find the vertex of the space that is closest to the line.
+    region_vertices = region.Vertices()
+    min_distance = numpy.infty
+    closest_point = None
+    for vertex in region_vertices:
+      point = vertex.T
+      length = numpy.abs((perpendicular_vector.T * point)[0, 0])
+      if length < min_distance:
+        min_distance = length
+        closest_point = point
+
+    return (closest_point, False)
+
+
+class VelocityDrivetrainModel(control_loop.ControlLoop):
+  def __init__(self, left_low=True, right_low=True, name="VelocityDrivetrainModel"):
+    super(VelocityDrivetrainModel, self).__init__(name)
+    self._drivetrain = drivetrain.Drivetrain(left_low=left_low,
+                                             right_low=right_low)
+    self.dt = 0.005
+    self.A_continuous = numpy.matrix(
+        [[self._drivetrain.A_continuous[1, 1], self._drivetrain.A_continuous[1, 3]],
+         [self._drivetrain.A_continuous[3, 1], self._drivetrain.A_continuous[3, 3]]])
+
+    self.B_continuous = numpy.matrix(
+        [[self._drivetrain.B_continuous[1, 0], self._drivetrain.B_continuous[1, 1]],
+         [self._drivetrain.B_continuous[3, 0], self._drivetrain.B_continuous[3, 1]]])
+    self.C = numpy.matrix(numpy.eye(2))
+    self.D = numpy.matrix(numpy.zeros((2, 2)))
+
+    self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+                                               self.B_continuous, self.dt)
+
+    # FF * X = U (steady state)
+    self.FF = self.B.I * (numpy.eye(2) - self.A)
+
+    self.PlaceControllerPoles([0.67, 0.67])
+    self.PlaceObserverPoles([0.02, 0.02])
+
+    self.G_high = self._drivetrain.G_high
+    self.G_low = self._drivetrain.G_low
+    self.resistance = self._drivetrain.resistance
+    self.r = self._drivetrain.r
+    self.Kv = self._drivetrain.Kv
+    self.Kt = self._drivetrain.Kt
+
+    self.U_max = self._drivetrain.U_max
+    self.U_min = self._drivetrain.U_min
+
+
+class VelocityDrivetrain(object):
+  HIGH = 'high'
+  LOW = 'low'
+  SHIFTING_UP = 'up'
+  SHIFTING_DOWN = 'down'
+
+  def __init__(self):
+    self.drivetrain_low_low = VelocityDrivetrainModel(
+        left_low=True, right_low=True, name='VelocityDrivetrainLowLow')
+    self.drivetrain_low_high = VelocityDrivetrainModel(left_low=True, right_low=False, name='VelocityDrivetrainLowHigh')
+    self.drivetrain_high_low = VelocityDrivetrainModel(left_low=False, right_low=True, name = 'VelocityDrivetrainHighLow')
+    self.drivetrain_high_high = VelocityDrivetrainModel(left_low=False, right_low=False, name = 'VelocityDrivetrainHighHigh')
+
+    # X is [lvel, rvel]
+    self.X = numpy.matrix(
+        [[0.0],
+         [0.0]])
+
+    self.U_poly = polytope.HPolytope(
+        numpy.matrix([[1, 0],
+                      [-1, 0],
+                      [0, 1],
+                      [0, -1]]),
+        numpy.matrix([[12],
+                      [12],
+                      [12],
+                      [12]]))
+
+    self.U_max = numpy.matrix(
+        [[12.0],
+         [12.0]])
+    self.U_min = numpy.matrix(
+        [[-12.0000000000],
+         [-12.0000000000]])
+
+    self.dt = 0.005
+
+    self.R = numpy.matrix(
+        [[0.0],
+         [0.0]])
+
+    self.U_ideal = numpy.matrix(
+        [[0.0],
+         [0.0]])
+
+    # ttrust is the comprimise between having full throttle negative inertia,
+    # and having no throttle negative inertia.  A value of 0 is full throttle
+    # inertia.  A value of 1 is no throttle negative inertia.
+    self.ttrust = 1.0
+
+    self.left_gear = VelocityDrivetrain.LOW
+    self.right_gear = VelocityDrivetrain.LOW
+    self.left_shifter_position = 0.0
+    self.right_shifter_position = 0.0
+    self.left_cim = drivetrain.CIM()
+    self.right_cim = drivetrain.CIM()
+
+  def IsInGear(self, gear):
+    return gear is VelocityDrivetrain.HIGH or gear is VelocityDrivetrain.LOW
+
+  def MotorRPM(self, shifter_position, velocity):
+    if shifter_position > 0.5:
+      return (velocity / self.CurrentDrivetrain().G_high /
+              self.CurrentDrivetrain().r)
+    else:
+      return (velocity / self.CurrentDrivetrain().G_low /
+              self.CurrentDrivetrain().r)
+
+  def CurrentDrivetrain(self):
+    if self.left_shifter_position > 0.5:
+      if self.right_shifter_position > 0.5:
+        return self.drivetrain_high_high
+      else:
+        return self.drivetrain_high_low
+    else:
+      if self.right_shifter_position > 0.5:
+        return self.drivetrain_low_high
+      else:
+        return self.drivetrain_low_low
+
+  def SimShifter(self, gear, shifter_position):
+    if gear is VelocityDrivetrain.HIGH or gear is VelocityDrivetrain.SHIFTING_UP:
+      shifter_position = min(shifter_position + 0.5, 1.0)
+    else:
+      shifter_position = max(shifter_position - 0.5, 0.0)
+
+    if shifter_position == 1.0:
+      gear = VelocityDrivetrain.HIGH
+    elif shifter_position == 0.0:
+      gear = VelocityDrivetrain.LOW
+
+    return gear, shifter_position
+
+  def ComputeGear(self, wheel_velocity, should_print=False, current_gear=False, gear_name=None):
+    high_omega = (wheel_velocity / self.CurrentDrivetrain().G_high /
+                  self.CurrentDrivetrain().r)
+    low_omega = (wheel_velocity / self.CurrentDrivetrain().G_low /
+                 self.CurrentDrivetrain().r)
+    #print gear_name, "Motor Energy Difference.", 0.5 * 0.000140032647 * (low_omega * low_omega - high_omega * high_omega), "joules"
+    high_torque = ((12.0 - high_omega / self.CurrentDrivetrain().Kv) *
+                   self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().resistance)
+    low_torque = ((12.0 - low_omega / self.CurrentDrivetrain().Kv) *
+                  self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().resistance)
+    high_power = high_torque * high_omega
+    low_power = low_torque * low_omega
+    #if should_print:
+    #  print gear_name, "High omega", high_omega, "Low omega", low_omega
+    #  print gear_name, "High torque", high_torque, "Low torque", low_torque
+    #  print gear_name, "High power", high_power, "Low power", low_power
+
+    # Shift algorithm improvements.
+    # TODO(aschuh):
+    # It takes time to shift.  Shifting down for 1 cycle doesn't make sense
+    # because you will end up slower than without shifting.  Figure out how
+    # to include that info.
+    # If the driver is still in high gear, but isn't asking for the extra power
+    # from low gear, don't shift until he asks for it.
+    goal_gear_is_high = high_power > low_power
+    #goal_gear_is_high = True
+
+    if not self.IsInGear(current_gear):
+      glog.debug('%s Not in gear.', gear_name)
+      return current_gear
+    else:
+      is_high = current_gear is VelocityDrivetrain.HIGH
+      if is_high != goal_gear_is_high:
+        if goal_gear_is_high:
+          glog.debug('%s Shifting up.', gear_name)
+          return VelocityDrivetrain.SHIFTING_UP
+        else:
+          glog.debug('%s Shifting down.', gear_name)
+          return VelocityDrivetrain.SHIFTING_DOWN
+      else:
+        return current_gear
+
+  def FilterVelocity(self, throttle):
+    # Invert the plant to figure out how the velocity filter would have to work
+    # out in order to filter out the forwards negative inertia.
+    # This math assumes that the left and right power and velocity are equal.
+
+    # The throttle filter should filter such that the motor in the highest gear
+    # should be controlling the time constant.
+    # Do this by finding the index of FF that has the lowest value, and computing
+    # the sums using that index.
+    FF_sum = self.CurrentDrivetrain().FF.sum(axis=1)
+    min_FF_sum_index = numpy.argmin(FF_sum)
+    min_FF_sum = FF_sum[min_FF_sum_index, 0]
+    min_K_sum = self.CurrentDrivetrain().K[min_FF_sum_index, :].sum()
+    # Compute the FF sum for high gear.
+    high_min_FF_sum = self.drivetrain_high_high.FF[0, :].sum()
+
+    # U = self.K[0, :].sum() * (R - x_avg) + self.FF[0, :].sum() * R
+    # throttle * 12.0 = (self.K[0, :].sum() + self.FF[0, :].sum()) * R
+    #                   - self.K[0, :].sum() * x_avg
+
+    # R = (throttle * 12.0 + self.K[0, :].sum() * x_avg) /
+    #     (self.K[0, :].sum() + self.FF[0, :].sum())
+
+    # U = (K + FF) * R - K * X
+    # (K + FF) ^-1 * (U + K * X) = R
+
+    # Scale throttle by min_FF_sum / high_min_FF_sum.  This will make low gear
+    # have the same velocity goal as high gear, and so that the robot will hold
+    # the same speed for the same throttle for all gears.
+    adjusted_ff_voltage = numpy.clip(throttle * 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0)
+    return ((adjusted_ff_voltage + self.ttrust * min_K_sum * (self.X[0, 0] + self.X[1, 0]) / 2.0)
+            / (self.ttrust * min_K_sum + min_FF_sum))
+
+  def Update(self, throttle, steering):
+    # Shift into the gear which sends the most power to the floor.
+    # This is the same as sending the most torque down to the floor at the
+    # wheel.
+
+    self.left_gear = self.right_gear = True
+    if True:
+      self.left_gear = self.ComputeGear(self.X[0, 0], should_print=True,
+                                        current_gear=self.left_gear,
+                                        gear_name="left")
+      self.right_gear = self.ComputeGear(self.X[1, 0], should_print=True,
+                                         current_gear=self.right_gear,
+                                         gear_name="right")
+      if self.IsInGear(self.left_gear):
+        self.left_cim.X[0, 0] = self.MotorRPM(self.left_shifter_position, self.X[0, 0])
+
+      if self.IsInGear(self.right_gear):
+        self.right_cim.X[0, 0] = self.MotorRPM(self.right_shifter_position, self.X[0, 0])
+
+    if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
+      # Filter the throttle to provide a nicer response.
+      fvel = self.FilterVelocity(throttle)
+
+      # Constant radius means that angualar_velocity / linear_velocity = constant.
+      # Compute the left and right velocities.
+      steering_velocity = numpy.abs(fvel) * steering
+      left_velocity = fvel - steering_velocity
+      right_velocity = fvel + steering_velocity
+
+      # Write this constraint in the form of K * R = w
+      # angular velocity / linear velocity = constant
+      # (left - right) / (left + right) = constant
+      # left - right = constant * left + constant * right
+
+      # (fvel - steering * numpy.abs(fvel) - fvel - steering * numpy.abs(fvel)) /
+      #  (fvel - steering * numpy.abs(fvel) + fvel + steering * numpy.abs(fvel)) =
+      #       constant
+      # (- 2 * steering * numpy.abs(fvel)) / (2 * fvel) = constant
+      # (-steering * sign(fvel)) = constant
+      # (-steering * sign(fvel)) * (left + right) = left - right
+      # (steering * sign(fvel) + 1) * left + (steering * sign(fvel) - 1) * right = 0
+
+      equality_k = numpy.matrix(
+          [[1 + steering * numpy.sign(fvel), -(1 - steering * numpy.sign(fvel))]])
+      equality_w = 0.0
+
+      self.R[0, 0] = left_velocity
+      self.R[1, 0] = right_velocity
+
+      # Construct a constraint on R by manipulating the constraint on U
+      # Start out with H * U <= k
+      # U = FF * R + K * (R - X)
+      # H * (FF * R + K * R - K * X) <= k
+      # H * (FF + K) * R <= k + H * K * X
+      R_poly = polytope.HPolytope(
+          self.U_poly.H * (self.CurrentDrivetrain().K + self.CurrentDrivetrain().FF),
+          self.U_poly.k + self.U_poly.H * self.CurrentDrivetrain().K * self.X)
+
+      # Limit R back inside the box.
+      self.boxed_R = CoerceGoal(R_poly, equality_k, equality_w, self.R)
+
+      FF_volts = self.CurrentDrivetrain().FF * self.boxed_R
+      self.U_ideal = self.CurrentDrivetrain().K * (self.boxed_R - self.X) + FF_volts
+    else:
+      glog.debug('Not all in gear')
+      if not self.IsInGear(self.left_gear) and not self.IsInGear(self.right_gear):
+        # TODO(austin): Use battery volts here.
+        R_left = self.MotorRPM(self.left_shifter_position, self.X[0, 0])
+        self.U_ideal[0, 0] = numpy.clip(
+            self.left_cim.K * (R_left - self.left_cim.X) + R_left / self.left_cim.Kv,
+            self.left_cim.U_min, self.left_cim.U_max)
+        self.left_cim.Update(self.U_ideal[0, 0])
+
+        R_right = self.MotorRPM(self.right_shifter_position, self.X[1, 0])
+        self.U_ideal[1, 0] = numpy.clip(
+            self.right_cim.K * (R_right - self.right_cim.X) + R_right / self.right_cim.Kv,
+            self.right_cim.U_min, self.right_cim.U_max)
+        self.right_cim.Update(self.U_ideal[1, 0])
+      else:
+        assert False
+
+    self.U = numpy.clip(self.U_ideal, self.U_min, self.U_max)
+
+    # TODO(austin): Model the robot as not accelerating when you shift...
+    # This hack only works when you shift at the same time.
+    if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
+      self.X = self.CurrentDrivetrain().A * self.X + self.CurrentDrivetrain().B * self.U
+
+    self.left_gear, self.left_shifter_position = self.SimShifter(
+        self.left_gear, self.left_shifter_position)
+    self.right_gear, self.right_shifter_position = self.SimShifter(
+        self.right_gear, self.right_shifter_position)
+
+    glog.debug('U is %s %s', str(self.U[0, 0]), str(self.U[1, 0]))
+    glog.debug('Left shifter %s %d Right shifter %s %d',
+               self.left_gear, self.left_shifter_position,
+               self.right_gear, self.right_shifter_position)
+
+
+def main(argv):
+  argv = FLAGS(argv)
+
+  vdrivetrain = VelocityDrivetrain()
+
+  if not FLAGS.plot:
+    if len(argv) != 5:
+      glog.fatal('Expected .h file name and .cc file name')
+    else:
+      namespaces = ['y2016_bot3', 'control_loops', 'drivetrain']
+      dog_loop_writer = control_loop.ControlLoopWriter(
+          "VelocityDrivetrain", [vdrivetrain.drivetrain_low_low,
+                         vdrivetrain.drivetrain_low_high,
+                         vdrivetrain.drivetrain_high_low,
+                         vdrivetrain.drivetrain_high_high],
+                         namespaces=namespaces)
+
+      dog_loop_writer.Write(argv[1], argv[2])
+
+      cim_writer = control_loop.ControlLoopWriter(
+          "CIM", [drivetrain.CIM()])
+
+      cim_writer.Write(argv[3], argv[4])
+      return
+
+  vl_plot = []
+  vr_plot = []
+  ul_plot = []
+  ur_plot = []
+  radius_plot = []
+  t_plot = []
+  left_gear_plot = []
+  right_gear_plot = []
+  vdrivetrain.left_shifter_position = 0.0
+  vdrivetrain.right_shifter_position = 0.0
+  vdrivetrain.left_gear = VelocityDrivetrain.LOW
+  vdrivetrain.right_gear = VelocityDrivetrain.LOW
+
+  glog.debug('K is %s', str(vdrivetrain.CurrentDrivetrain().K))
+
+  if vdrivetrain.left_gear is VelocityDrivetrain.HIGH:
+    glog.debug('Left is high')
+  else:
+    glog.debug('Left is low')
+  if vdrivetrain.right_gear is VelocityDrivetrain.HIGH:
+    glog.debug('Right is high')
+  else:
+    glog.debug('Right is low')
+
+  for t in numpy.arange(0, 1.7, vdrivetrain.dt):
+    if t < 0.5:
+      vdrivetrain.Update(throttle=0.00, steering=1.0)
+    elif t < 1.2:
+      vdrivetrain.Update(throttle=0.5, steering=1.0)
+    else:
+      vdrivetrain.Update(throttle=0.00, steering=1.0)
+    t_plot.append(t)
+    vl_plot.append(vdrivetrain.X[0, 0])
+    vr_plot.append(vdrivetrain.X[1, 0])
+    ul_plot.append(vdrivetrain.U[0, 0])
+    ur_plot.append(vdrivetrain.U[1, 0])
+    left_gear_plot.append((vdrivetrain.left_gear is VelocityDrivetrain.HIGH) * 2.0 - 10.0)
+    right_gear_plot.append((vdrivetrain.right_gear is VelocityDrivetrain.HIGH) * 2.0 - 10.0)
+
+    fwd_velocity = (vdrivetrain.X[1, 0] + vdrivetrain.X[0, 0]) / 2
+    turn_velocity = (vdrivetrain.X[1, 0] - vdrivetrain.X[0, 0])
+    if abs(fwd_velocity) < 0.0000001:
+      radius_plot.append(turn_velocity)
+    else:
+      radius_plot.append(turn_velocity / fwd_velocity)
+
+  # TODO(austin):
+  # Shifting compensation.
+
+  # Tighten the turn.
+  # Closed loop drive.
+
+  pylab.plot(t_plot, vl_plot, label='left velocity')
+  pylab.plot(t_plot, vr_plot, label='right velocity')
+  pylab.plot(t_plot, ul_plot, label='left voltage')
+  pylab.plot(t_plot, ur_plot, label='right voltage')
+  pylab.plot(t_plot, radius_plot, label='radius')
+  pylab.plot(t_plot, left_gear_plot, label='left gear high')
+  pylab.plot(t_plot, right_gear_plot, label='right gear high')
+  pylab.legend()
+  pylab.show()
+  return 0
+
+if __name__ == '__main__':
+  sys.exit(main(sys.argv))
diff --git a/y2016_bot3/control_loops/python/polydrivetrain_test.py b/y2016_bot3/control_loops/python/polydrivetrain_test.py
new file mode 100755
index 0000000..434cdca
--- /dev/null
+++ b/y2016_bot3/control_loops/python/polydrivetrain_test.py
@@ -0,0 +1,82 @@
+#!/usr/bin/python
+
+import polydrivetrain
+import numpy
+from numpy.testing import *
+import polytope
+import unittest
+
+__author__ = 'Austin Schuh (austin.linux@gmail.com)'
+
+
+class TestVelocityDrivetrain(unittest.TestCase):
+  def MakeBox(self, x1_min, x1_max, x2_min, x2_max):
+    H = numpy.matrix([[1, 0],
+                      [-1, 0],
+                      [0, 1],
+                      [0, -1]])
+    K = numpy.matrix([[x1_max],
+                      [-x1_min],
+                      [x2_max],
+                      [-x2_min]])
+    return polytope.HPolytope(H, K)
+
+  def test_coerce_inside(self):
+    """Tests coercion when the point is inside the box."""
+    box = self.MakeBox(1, 2, 1, 2)
+
+    # x1 = x2
+    K = numpy.matrix([[1, -1]])
+    w = 0
+
+    assert_array_equal(polydrivetrain.CoerceGoal(box, K, w,
+                                                 numpy.matrix([[1.5], [1.5]])),
+                       numpy.matrix([[1.5], [1.5]]))
+
+  def test_coerce_outside_intersect(self):
+    """Tests coercion when the line intersects the box."""
+    box = self.MakeBox(1, 2, 1, 2)
+
+    # x1 = x2
+    K = numpy.matrix([[1, -1]])
+    w = 0
+
+    assert_array_equal(polydrivetrain.CoerceGoal(box, K, w, numpy.matrix([[5], [5]])),
+                       numpy.matrix([[2.0], [2.0]]))
+
+  def test_coerce_outside_no_intersect(self):
+    """Tests coercion when the line does not intersect the box."""
+    box = self.MakeBox(3, 4, 1, 2)
+
+    # x1 = x2
+    K = numpy.matrix([[1, -1]])
+    w = 0
+
+    assert_array_equal(polydrivetrain.CoerceGoal(box, K, w, numpy.matrix([[5], [5]])),
+                       numpy.matrix([[3.0], [2.0]]))
+
+  def test_coerce_middle_of_edge(self):
+    """Tests coercion when the line intersects the middle of an edge."""
+    box = self.MakeBox(0, 4, 1, 2)
+
+    # x1 = x2
+    K = numpy.matrix([[-1, 1]])
+    w = 0
+
+    assert_array_equal(polydrivetrain.CoerceGoal(box, K, w, numpy.matrix([[5], [5]])),
+                       numpy.matrix([[2.0], [2.0]]))
+
+  def test_coerce_perpendicular_line(self):
+    """Tests coercion when the line does not intersect and is in quadrant 2."""
+    box = self.MakeBox(1, 2, 1, 2)
+
+    # x1 = -x2
+    K = numpy.matrix([[1, 1]])
+    w = 0
+
+    assert_array_equal(polydrivetrain.CoerceGoal(box, K, w, numpy.matrix([[5], [5]])),
+                       numpy.matrix([[1.0], [1.0]]))
+
+
+if __name__ == '__main__':
+  unittest.main()