Squashed 'third_party/eigen/' changes from 61d72f6..cf794d3


Change-Id: I9b814151b01f49af6337a8605d0c42a3a1ed4c72
git-subtree-dir: third_party/eigen
git-subtree-split: cf794d3b741a6278df169e58461f8529f43bce5d
diff --git a/doc/TutorialGeometry.dox b/doc/TutorialGeometry.dox
index 372a275..2e1420f 100644
--- a/doc/TutorialGeometry.dox
+++ b/doc/TutorialGeometry.dox
@@ -126,11 +126,12 @@
 VectorNf vec1, vec2;
 vec2 = t.linear() * vec1;\endcode</td></tr>
 <tr><td>
-Apply a \em general transformation \n to a \b normal \b vector
-(<a href="http://femto.cs.uiuc.edu/faqs/cga-faq.html#S5.27">explanations</a>)</td><td>\code
+Apply a \em general transformation \n to a \b normal \b vector \n
+</td><td>\code
 VectorNf n1, n2;
 MatrixNf normalMatrix = t.linear().inverse().transpose();
 n2 = (normalMatrix * n1).normalized();\endcode</td></tr>
+<tr><td colspan="2">(See subject 5.27 of this <a href="http://www.faqs.org/faqs/graphics/algorithms-faq">faq</a> for the explanations)</td></tr>
 <tr class="alt"><td>
 Apply a transformation with \em pure \em rotation \n to a \b normal \b vector
 (no scaling, no shear)</td><td>\code
@@ -231,8 +232,8 @@
 to create a rotation matrix according to the 2-1-2 convention.</td><td>\code
 Matrix3f m;
 m = AngleAxisf(angle1, Vector3f::UnitZ())
-*  * AngleAxisf(angle2, Vector3f::UnitY())
-*  * AngleAxisf(angle3, Vector3f::UnitZ());
+  * AngleAxisf(angle2, Vector3f::UnitY())
+  * AngleAxisf(angle3, Vector3f::UnitZ());
 \endcode</td></tr>
 </table>