Squashed 'third_party/eigen/' changes from 61d72f6..cf794d3


Change-Id: I9b814151b01f49af6337a8605d0c42a3a1ed4c72
git-subtree-dir: third_party/eigen
git-subtree-split: cf794d3b741a6278df169e58461f8529f43bce5d
diff --git a/Eigen/src/Geometry/Rotation2D.h b/Eigen/src/Geometry/Rotation2D.h
index a2d59fc..884b7d0 100644
--- a/Eigen/src/Geometry/Rotation2D.h
+++ b/Eigen/src/Geometry/Rotation2D.h
@@ -18,7 +18,7 @@
   *
   * \brief Represents a rotation/orientation in a 2 dimensional space.
   *
-  * \param _Scalar the scalar type, i.e., the type of the coefficients
+  * \tparam _Scalar the scalar type, i.e., the type of the coefficients
   *
   * This class is equivalent to a single scalar representing a counter clock wise rotation
   * as a single angle in radian. It provides some additional features such as the automatic
@@ -59,41 +59,79 @@
 public:
 
   /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
-  inline Rotation2D(const Scalar& a) : m_angle(a) {}
+  EIGEN_DEVICE_FUNC explicit inline Rotation2D(const Scalar& a) : m_angle(a) {}
   
   /** Default constructor wihtout initialization. The represented rotation is undefined. */
-  Rotation2D() {}
+  EIGEN_DEVICE_FUNC Rotation2D() {}
+
+  /** Construct a 2D rotation from a 2x2 rotation matrix \a mat.
+    *
+    * \sa fromRotationMatrix()
+    */
+  template<typename Derived>
+  EIGEN_DEVICE_FUNC explicit Rotation2D(const MatrixBase<Derived>& m)
+  {
+    fromRotationMatrix(m.derived());
+  }
 
   /** \returns the rotation angle */
-  inline Scalar angle() const { return m_angle; }
+  EIGEN_DEVICE_FUNC inline Scalar angle() const { return m_angle; }
 
   /** \returns a read-write reference to the rotation angle */
-  inline Scalar& angle() { return m_angle; }
+  EIGEN_DEVICE_FUNC inline Scalar& angle() { return m_angle; }
+  
+  /** \returns the rotation angle in [0,2pi] */
+  EIGEN_DEVICE_FUNC inline Scalar smallestPositiveAngle() const {
+    Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI));
+    return tmp<Scalar(0) ? tmp + Scalar(2*EIGEN_PI) : tmp;
+  }
+  
+  /** \returns the rotation angle in [-pi,pi] */
+  EIGEN_DEVICE_FUNC inline Scalar smallestAngle() const {
+    Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI));
+    if(tmp>Scalar(EIGEN_PI))       tmp -= Scalar(2*EIGEN_PI);
+    else if(tmp<-Scalar(EIGEN_PI)) tmp += Scalar(2*EIGEN_PI);
+    return tmp;
+  }
 
   /** \returns the inverse rotation */
-  inline Rotation2D inverse() const { return -m_angle; }
+  EIGEN_DEVICE_FUNC inline Rotation2D inverse() const { return Rotation2D(-m_angle); }
 
   /** Concatenates two rotations */
-  inline Rotation2D operator*(const Rotation2D& other) const
-  { return m_angle + other.m_angle; }
+  EIGEN_DEVICE_FUNC inline Rotation2D operator*(const Rotation2D& other) const
+  { return Rotation2D(m_angle + other.m_angle); }
 
   /** Concatenates two rotations */
-  inline Rotation2D& operator*=(const Rotation2D& other)
+  EIGEN_DEVICE_FUNC inline Rotation2D& operator*=(const Rotation2D& other)
   { m_angle += other.m_angle; return *this; }
 
   /** Applies the rotation to a 2D vector */
-  Vector2 operator* (const Vector2& vec) const
+  EIGEN_DEVICE_FUNC Vector2 operator* (const Vector2& vec) const
   { return toRotationMatrix() * vec; }
   
   template<typename Derived>
-  Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
-  Matrix2 toRotationMatrix() const;
+  EIGEN_DEVICE_FUNC Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
+  EIGEN_DEVICE_FUNC Matrix2 toRotationMatrix() const;
+
+  /** Set \c *this from a 2x2 rotation matrix \a mat.
+    * In other words, this function extract the rotation angle from the rotation matrix.
+    *
+    * This method is an alias for fromRotationMatrix()
+    *
+    * \sa fromRotationMatrix()
+    */
+  template<typename Derived>
+  EIGEN_DEVICE_FUNC Rotation2D& operator=(const  MatrixBase<Derived>& m)
+  { return fromRotationMatrix(m.derived()); }
 
   /** \returns the spherical interpolation between \c *this and \a other using
     * parameter \a t. It is in fact equivalent to a linear interpolation.
     */
-  inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const
-  { return m_angle * (1-t) + other.angle() * t; }
+  EIGEN_DEVICE_FUNC inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const
+  {
+    Scalar dist = Rotation2D(other.m_angle-m_angle).smallestAngle();
+    return Rotation2D(m_angle + dist*t);
+  }
 
   /** \returns \c *this with scalar type casted to \a NewScalarType
     *
@@ -101,24 +139,25 @@
     * then this function smartly returns a const reference to \c *this.
     */
   template<typename NewScalarType>
-  inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
+  EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
   { return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); }
 
   /** Copy constructor with scalar type conversion */
   template<typename OtherScalarType>
-  inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
+  EIGEN_DEVICE_FUNC inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
   {
     m_angle = Scalar(other.angle());
   }
 
-  static inline Rotation2D Identity() { return Rotation2D(0); }
+  EIGEN_DEVICE_FUNC static inline Rotation2D Identity() { return Rotation2D(0); }
 
   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
     * determined by \a prec.
     *
     * \sa MatrixBase::isApprox() */
-  bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
+  EIGEN_DEVICE_FUNC bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
   { return internal::isApprox(m_angle,other.m_angle, prec); }
+  
 };
 
 /** \ingroup Geometry_Module
@@ -134,9 +173,9 @@
   */
 template<typename Scalar>
 template<typename Derived>
-Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
+EIGEN_DEVICE_FUNC Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
 {
-  using std::atan2;
+  EIGEN_USING_STD_MATH(atan2)
   EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
   m_angle = atan2(mat.coeff(1,0), mat.coeff(0,0));
   return *this;
@@ -146,10 +185,10 @@
   */
 template<typename Scalar>
 typename Rotation2D<Scalar>::Matrix2
-Rotation2D<Scalar>::toRotationMatrix(void) const
+EIGEN_DEVICE_FUNC Rotation2D<Scalar>::toRotationMatrix(void) const
 {
-  using std::sin;
-  using std::cos;
+  EIGEN_USING_STD_MATH(sin)
+  EIGEN_USING_STD_MATH(cos)
   Scalar sinA = sin(m_angle);
   Scalar cosA = cos(m_angle);
   return (Matrix2() << cosA, -sinA, sinA, cosA).finished();