Copy back a lot of the 2014 code.
Change-Id: I552292d8bd7bce4409e02d254bef06a9cc009568
diff --git a/y2014/control_loops/python/shooter.py b/y2014/control_loops/python/shooter.py
new file mode 100755
index 0000000..69f2599
--- /dev/null
+++ b/y2014/control_loops/python/shooter.py
@@ -0,0 +1,254 @@
+#!/usr/bin/python
+
+import control_loop
+import numpy
+import sys
+from matplotlib import pylab
+
+class SprungShooter(control_loop.ControlLoop):
+ def __init__(self, name="RawSprungShooter"):
+ super(SprungShooter, self).__init__(name)
+ # Stall Torque in N m
+ self.stall_torque = .4982
+ # Stall Current in Amps
+ self.stall_current = 85
+ # Free Speed in RPM
+ self.free_speed = 19300.0
+ # Free Current in Amps
+ self.free_current = 1.2
+ # Effective mass of the shooter in kg.
+ # This rough estimate should about include the effect of the masses
+ # of the gears. If this number is too low, the eigen values of self.A
+ # will start to become extremely small.
+ self.J = 200
+ # Resistance of the motor, divided by the number of motors.
+ self.R = 12.0 / self.stall_current / 2.0
+ # Motor velocity constant
+ self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
+ (12.0 - self.R * self.free_current))
+ # Torque constant
+ self.Kt = self.stall_torque / self.stall_current
+ # Spring constant for the springs, N/m
+ self.Ks = 2800.0
+ # Maximum extension distance (Distance from the 0 force point on the
+ # spring to the latch position.)
+ self.max_extension = 0.32385
+ # Gear ratio multiplied by radius of final sprocket.
+ self.G = 10.0 / 40.0 * 20.0 / 54.0 * 24.0 / 54.0 * 20.0 / 84.0 * 16.0 * (3.0 / 8.0) / (2.0 * numpy.pi) * 0.0254
+
+ # Control loop time step
+ self.dt = 0.01
+
+ # State feedback matrices
+ self.A_continuous = numpy.matrix(
+ [[0, 1],
+ [-self.Ks / self.J,
+ -self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
+ self.B_continuous = numpy.matrix(
+ [[0],
+ [self.Kt / (self.J * self.G * self.R)]])
+ self.C = numpy.matrix([[1, 0]])
+ self.D = numpy.matrix([[0]])
+
+ self.A, self.B = self.ContinuousToDiscrete(
+ self.A_continuous, self.B_continuous, self.dt)
+
+ self.PlaceControllerPoles([0.45, 0.45])
+
+ self.rpl = .05
+ self.ipl = 0.008
+ self.PlaceObserverPoles([self.rpl,
+ self.rpl])
+
+ self.U_max = numpy.matrix([[12.0]])
+ self.U_min = numpy.matrix([[-12.0]])
+
+ self.InitializeState()
+
+
+class Shooter(SprungShooter):
+ def __init__(self, name="RawShooter"):
+ super(Shooter, self).__init__(name)
+
+ # State feedback matrices
+ self.A_continuous = numpy.matrix(
+ [[0, 1],
+ [0, -self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
+ self.B_continuous = numpy.matrix(
+ [[0],
+ [self.Kt / (self.J * self.G * self.R)]])
+
+ self.A, self.B = self.ContinuousToDiscrete(
+ self.A_continuous, self.B_continuous, self.dt)
+
+ self.PlaceControllerPoles([0.45, 0.45])
+
+ self.rpl = .05
+ self.ipl = 0.008
+ self.PlaceObserverPoles([self.rpl,
+ self.rpl])
+
+ self.U_max = numpy.matrix([[12.0]])
+ self.U_min = numpy.matrix([[-12.0]])
+
+ self.InitializeState()
+
+
+class SprungShooterDeltaU(SprungShooter):
+ def __init__(self, name="SprungShooter"):
+ super(SprungShooterDeltaU, self).__init__(name)
+ A_unaugmented = self.A
+ B_unaugmented = self.B
+
+ self.A = numpy.matrix([[0.0, 0.0, 0.0],
+ [0.0, 0.0, 0.0],
+ [0.0, 0.0, 1.0]])
+ self.A[0:2, 0:2] = A_unaugmented
+ self.A[0:2, 2] = B_unaugmented
+
+ self.B = numpy.matrix([[0.0],
+ [0.0],
+ [1.0]])
+
+ self.C = numpy.matrix([[1.0, 0.0, 0.0]])
+ self.D = numpy.matrix([[0.0]])
+
+ self.PlaceControllerPoles([0.50, 0.35, 0.80])
+
+ print "K"
+ print self.K
+ print "Placed controller poles are"
+ print numpy.linalg.eig(self.A - self.B * self.K)[0]
+
+ self.rpl = .05
+ self.ipl = 0.008
+ self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
+ self.rpl - 1j * self.ipl, 0.90])
+ print "Placed observer poles are"
+ print numpy.linalg.eig(self.A - self.L * self.C)[0]
+
+ self.U_max = numpy.matrix([[12.0]])
+ self.U_min = numpy.matrix([[-12.0]])
+
+ self.InitializeState()
+
+
+class ShooterDeltaU(Shooter):
+ def __init__(self, name="Shooter"):
+ super(ShooterDeltaU, self).__init__(name)
+ A_unaugmented = self.A
+ B_unaugmented = self.B
+
+ self.A = numpy.matrix([[0.0, 0.0, 0.0],
+ [0.0, 0.0, 0.0],
+ [0.0, 0.0, 1.0]])
+ self.A[0:2, 0:2] = A_unaugmented
+ self.A[0:2, 2] = B_unaugmented
+
+ self.B = numpy.matrix([[0.0],
+ [0.0],
+ [1.0]])
+
+ self.C = numpy.matrix([[1.0, 0.0, 0.0]])
+ self.D = numpy.matrix([[0.0]])
+
+ self.PlaceControllerPoles([0.55, 0.45, 0.80])
+
+ print "K"
+ print self.K
+ print "Placed controller poles are"
+ print numpy.linalg.eig(self.A - self.B * self.K)[0]
+
+ self.rpl = .05
+ self.ipl = 0.008
+ self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
+ self.rpl - 1j * self.ipl, 0.90])
+ print "Placed observer poles are"
+ print numpy.linalg.eig(self.A - self.L * self.C)[0]
+
+ self.U_max = numpy.matrix([[12.0]])
+ self.U_min = numpy.matrix([[-12.0]])
+
+ self.InitializeState()
+
+
+def ClipDeltaU(shooter, old_voltage, delta_u):
+ old_u = old_voltage
+ new_u = numpy.clip(old_u + delta_u, shooter.U_min, shooter.U_max)
+ return new_u - old_u
+
+def main(argv):
+ # Simulate the response of the system to a goal.
+ sprung_shooter = SprungShooterDeltaU()
+ raw_sprung_shooter = SprungShooter()
+ close_loop_x = []
+ close_loop_u = []
+ goal_position = -0.3
+ R = numpy.matrix([[goal_position], [0.0], [-sprung_shooter.A[1, 0] / sprung_shooter.A[1, 2] * goal_position]])
+ voltage = numpy.matrix([[0.0]])
+ for _ in xrange(500):
+ U = sprung_shooter.K * (R - sprung_shooter.X_hat)
+ U = ClipDeltaU(sprung_shooter, voltage, U)
+ sprung_shooter.Y = raw_sprung_shooter.Y + 0.01
+ sprung_shooter.UpdateObserver(U)
+ voltage += U;
+ raw_sprung_shooter.Update(voltage)
+ close_loop_x.append(raw_sprung_shooter.X[0, 0] * 10)
+ close_loop_u.append(voltage[0, 0])
+
+ pylab.plot(range(500), close_loop_x)
+ pylab.plot(range(500), close_loop_u)
+ pylab.show()
+
+ shooter = ShooterDeltaU()
+ raw_shooter = Shooter()
+ close_loop_x = []
+ close_loop_u = []
+ goal_position = -0.3
+ R = numpy.matrix([[goal_position], [0.0], [-shooter.A[1, 0] / shooter.A[1, 2] * goal_position]])
+ voltage = numpy.matrix([[0.0]])
+ for _ in xrange(500):
+ U = shooter.K * (R - shooter.X_hat)
+ U = ClipDeltaU(shooter, voltage, U)
+ shooter.Y = raw_shooter.Y + 0.01
+ shooter.UpdateObserver(U)
+ voltage += U;
+ raw_shooter.Update(voltage)
+ close_loop_x.append(raw_shooter.X[0, 0] * 10)
+ close_loop_u.append(voltage[0, 0])
+
+ pylab.plot(range(500), close_loop_x)
+ pylab.plot(range(500), close_loop_u)
+ pylab.show()
+
+ # Write the generated constants out to a file.
+ if len(argv) != 5:
+ print "Expected .h file name and .cc file name for"
+ print "both the plant and unaugmented plant"
+ else:
+ unaug_sprung_shooter = SprungShooter("RawSprungShooter")
+ unaug_shooter = Shooter("RawShooter")
+ unaug_loop_writer = control_loop.ControlLoopWriter("RawShooter",
+ [unaug_sprung_shooter,
+ unaug_shooter])
+ if argv[3][-3:] == '.cc':
+ unaug_loop_writer.Write(argv[4], argv[3])
+ else:
+ unaug_loop_writer.Write(argv[3], argv[4])
+
+ sprung_shooter = SprungShooterDeltaU()
+ shooter = ShooterDeltaU()
+ loop_writer = control_loop.ControlLoopWriter("Shooter", [sprung_shooter,
+ shooter])
+
+ loop_writer.AddConstant(control_loop.Constant("kMaxExtension", "%f",
+ sprung_shooter.max_extension))
+ loop_writer.AddConstant(control_loop.Constant("kSpringConstant", "%f",
+ sprung_shooter.Ks))
+ if argv[1][-3:] == '.cc':
+ loop_writer.Write(argv[2], argv[1])
+ else:
+ loop_writer.Write(argv[1], argv[2])
+
+if __name__ == '__main__':
+ sys.exit(main(sys.argv))