Copy back a lot of the 2014 code.

Change-Id: I552292d8bd7bce4409e02d254bef06a9cc009568
diff --git a/y2014/control_loops/python/shooter.py b/y2014/control_loops/python/shooter.py
new file mode 100755
index 0000000..69f2599
--- /dev/null
+++ b/y2014/control_loops/python/shooter.py
@@ -0,0 +1,254 @@
+#!/usr/bin/python
+
+import control_loop
+import numpy
+import sys
+from matplotlib import pylab
+
+class SprungShooter(control_loop.ControlLoop):
+  def __init__(self, name="RawSprungShooter"):
+    super(SprungShooter, self).__init__(name)
+    # Stall Torque in N m
+    self.stall_torque = .4982
+    # Stall Current in Amps
+    self.stall_current = 85
+    # Free Speed in RPM
+    self.free_speed = 19300.0
+    # Free Current in Amps
+    self.free_current = 1.2
+    # Effective mass of the shooter in kg.
+    # This rough estimate should about include the effect of the masses
+    # of the gears. If this number is too low, the eigen values of self.A
+    # will start to become extremely small.
+    self.J = 200
+    # Resistance of the motor, divided by the number of motors.
+    self.R = 12.0 / self.stall_current / 2.0
+    # Motor velocity constant
+    self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
+               (12.0 - self.R * self.free_current))
+    # Torque constant
+    self.Kt = self.stall_torque / self.stall_current
+    # Spring constant for the springs, N/m
+    self.Ks = 2800.0
+    # Maximum extension distance (Distance from the 0 force point on the
+    # spring to the latch position.)
+    self.max_extension = 0.32385
+    # Gear ratio multiplied by radius of final sprocket.
+    self.G = 10.0 / 40.0 * 20.0 / 54.0 * 24.0 / 54.0 * 20.0 / 84.0 * 16.0 * (3.0 / 8.0) / (2.0 * numpy.pi) * 0.0254
+
+    # Control loop time step
+    self.dt = 0.01
+
+    # State feedback matrices
+    self.A_continuous = numpy.matrix(
+        [[0, 1],
+         [-self.Ks / self.J,
+          -self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
+    self.B_continuous = numpy.matrix(
+        [[0],
+         [self.Kt / (self.J * self.G * self.R)]])
+    self.C = numpy.matrix([[1, 0]])
+    self.D = numpy.matrix([[0]])
+
+    self.A, self.B = self.ContinuousToDiscrete(
+        self.A_continuous, self.B_continuous, self.dt)
+
+    self.PlaceControllerPoles([0.45, 0.45])
+
+    self.rpl = .05
+    self.ipl = 0.008
+    self.PlaceObserverPoles([self.rpl,
+                             self.rpl])
+
+    self.U_max = numpy.matrix([[12.0]])
+    self.U_min = numpy.matrix([[-12.0]])
+
+    self.InitializeState()
+
+
+class Shooter(SprungShooter):
+  def __init__(self, name="RawShooter"):
+    super(Shooter, self).__init__(name)
+
+    # State feedback matrices
+    self.A_continuous = numpy.matrix(
+        [[0, 1],
+         [0, -self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
+    self.B_continuous = numpy.matrix(
+        [[0],
+         [self.Kt / (self.J * self.G * self.R)]])
+
+    self.A, self.B = self.ContinuousToDiscrete(
+        self.A_continuous, self.B_continuous, self.dt)
+
+    self.PlaceControllerPoles([0.45, 0.45])
+
+    self.rpl = .05
+    self.ipl = 0.008
+    self.PlaceObserverPoles([self.rpl,
+                             self.rpl])
+
+    self.U_max = numpy.matrix([[12.0]])
+    self.U_min = numpy.matrix([[-12.0]])
+
+    self.InitializeState()
+
+
+class SprungShooterDeltaU(SprungShooter):
+  def __init__(self, name="SprungShooter"):
+    super(SprungShooterDeltaU, self).__init__(name)
+    A_unaugmented = self.A
+    B_unaugmented = self.B
+
+    self.A = numpy.matrix([[0.0, 0.0, 0.0],
+                           [0.0, 0.0, 0.0],
+                           [0.0, 0.0, 1.0]])
+    self.A[0:2, 0:2] = A_unaugmented
+    self.A[0:2, 2] = B_unaugmented
+
+    self.B = numpy.matrix([[0.0],
+                           [0.0],
+                           [1.0]])
+
+    self.C = numpy.matrix([[1.0, 0.0, 0.0]])
+    self.D = numpy.matrix([[0.0]])
+
+    self.PlaceControllerPoles([0.50, 0.35, 0.80])
+
+    print "K"
+    print self.K
+    print "Placed controller poles are"
+    print numpy.linalg.eig(self.A - self.B * self.K)[0]
+
+    self.rpl = .05
+    self.ipl = 0.008
+    self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
+                             self.rpl - 1j * self.ipl, 0.90])
+    print "Placed observer poles are"
+    print numpy.linalg.eig(self.A - self.L * self.C)[0]
+
+    self.U_max = numpy.matrix([[12.0]])
+    self.U_min = numpy.matrix([[-12.0]])
+
+    self.InitializeState()
+
+
+class ShooterDeltaU(Shooter):
+  def __init__(self, name="Shooter"):
+    super(ShooterDeltaU, self).__init__(name)
+    A_unaugmented = self.A
+    B_unaugmented = self.B
+
+    self.A = numpy.matrix([[0.0, 0.0, 0.0],
+                           [0.0, 0.0, 0.0],
+                           [0.0, 0.0, 1.0]])
+    self.A[0:2, 0:2] = A_unaugmented
+    self.A[0:2, 2] = B_unaugmented
+
+    self.B = numpy.matrix([[0.0],
+                           [0.0],
+                           [1.0]])
+
+    self.C = numpy.matrix([[1.0, 0.0, 0.0]])
+    self.D = numpy.matrix([[0.0]])
+
+    self.PlaceControllerPoles([0.55, 0.45, 0.80])
+
+    print "K"
+    print self.K
+    print "Placed controller poles are"
+    print numpy.linalg.eig(self.A - self.B * self.K)[0]
+
+    self.rpl = .05
+    self.ipl = 0.008
+    self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
+                             self.rpl - 1j * self.ipl, 0.90])
+    print "Placed observer poles are"
+    print numpy.linalg.eig(self.A - self.L * self.C)[0]
+
+    self.U_max = numpy.matrix([[12.0]])
+    self.U_min = numpy.matrix([[-12.0]])
+
+    self.InitializeState()
+
+
+def ClipDeltaU(shooter, old_voltage, delta_u):
+  old_u = old_voltage
+  new_u = numpy.clip(old_u + delta_u, shooter.U_min, shooter.U_max)
+  return new_u - old_u
+
+def main(argv):
+  # Simulate the response of the system to a goal.
+  sprung_shooter = SprungShooterDeltaU()
+  raw_sprung_shooter = SprungShooter()
+  close_loop_x = []
+  close_loop_u = []
+  goal_position = -0.3
+  R = numpy.matrix([[goal_position], [0.0], [-sprung_shooter.A[1, 0] / sprung_shooter.A[1, 2] * goal_position]])
+  voltage = numpy.matrix([[0.0]])
+  for _ in xrange(500):
+    U = sprung_shooter.K * (R - sprung_shooter.X_hat)
+    U = ClipDeltaU(sprung_shooter, voltage, U)
+    sprung_shooter.Y = raw_sprung_shooter.Y + 0.01
+    sprung_shooter.UpdateObserver(U)
+    voltage += U;
+    raw_sprung_shooter.Update(voltage)
+    close_loop_x.append(raw_sprung_shooter.X[0, 0] * 10)
+    close_loop_u.append(voltage[0, 0])
+
+  pylab.plot(range(500), close_loop_x)
+  pylab.plot(range(500), close_loop_u)
+  pylab.show()
+
+  shooter = ShooterDeltaU()
+  raw_shooter = Shooter()
+  close_loop_x = []
+  close_loop_u = []
+  goal_position = -0.3
+  R = numpy.matrix([[goal_position], [0.0], [-shooter.A[1, 0] / shooter.A[1, 2] * goal_position]])
+  voltage = numpy.matrix([[0.0]])
+  for _ in xrange(500):
+    U = shooter.K * (R - shooter.X_hat)
+    U = ClipDeltaU(shooter, voltage, U)
+    shooter.Y = raw_shooter.Y + 0.01
+    shooter.UpdateObserver(U)
+    voltage += U;
+    raw_shooter.Update(voltage)
+    close_loop_x.append(raw_shooter.X[0, 0] * 10)
+    close_loop_u.append(voltage[0, 0])
+
+  pylab.plot(range(500), close_loop_x)
+  pylab.plot(range(500), close_loop_u)
+  pylab.show()
+
+  # Write the generated constants out to a file.
+  if len(argv) != 5:
+    print "Expected .h file name and .cc file name for"
+    print "both the plant and unaugmented plant"
+  else:
+    unaug_sprung_shooter = SprungShooter("RawSprungShooter")
+    unaug_shooter = Shooter("RawShooter")
+    unaug_loop_writer = control_loop.ControlLoopWriter("RawShooter",
+                                                       [unaug_sprung_shooter,
+                                                        unaug_shooter])
+    if argv[3][-3:] == '.cc':
+      unaug_loop_writer.Write(argv[4], argv[3])
+    else:
+      unaug_loop_writer.Write(argv[3], argv[4])
+
+    sprung_shooter = SprungShooterDeltaU()
+    shooter = ShooterDeltaU()
+    loop_writer = control_loop.ControlLoopWriter("Shooter", [sprung_shooter,
+                                                             shooter])
+
+    loop_writer.AddConstant(control_loop.Constant("kMaxExtension", "%f",
+                                                  sprung_shooter.max_extension))
+    loop_writer.AddConstant(control_loop.Constant("kSpringConstant", "%f",
+                                                  sprung_shooter.Ks))
+    if argv[1][-3:] == '.cc':
+      loop_writer.Write(argv[2], argv[1])
+    else:
+      loop_writer.Write(argv[1], argv[2])
+
+if __name__ == '__main__':
+  sys.exit(main(sys.argv))