Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 5 | // Copyright (C) 2009 Ricard Marxer <email@ricardmarxer.com> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #include "main.h" |
| 12 | #include <iostream> |
| 13 | |
| 14 | using namespace std; |
| 15 | |
| 16 | template<typename MatrixType> void reverse(const MatrixType& m) |
| 17 | { |
| 18 | typedef typename MatrixType::Index Index; |
| 19 | typedef typename MatrixType::Scalar Scalar; |
| 20 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| 21 | |
| 22 | Index rows = m.rows(); |
| 23 | Index cols = m.cols(); |
| 24 | |
| 25 | // this test relies a lot on Random.h, and there's not much more that we can do |
| 26 | // to test it, hence I consider that we will have tested Random.h |
| 27 | MatrixType m1 = MatrixType::Random(rows, cols); |
| 28 | VectorType v1 = VectorType::Random(rows); |
| 29 | |
| 30 | MatrixType m1_r = m1.reverse(); |
| 31 | // Verify that MatrixBase::reverse() works |
| 32 | for ( int i = 0; i < rows; i++ ) { |
| 33 | for ( int j = 0; j < cols; j++ ) { |
| 34 | VERIFY_IS_APPROX(m1_r(i, j), m1(rows - 1 - i, cols - 1 - j)); |
| 35 | } |
| 36 | } |
| 37 | |
| 38 | Reverse<MatrixType> m1_rd(m1); |
| 39 | // Verify that a Reverse default (in both directions) of an expression works |
| 40 | for ( int i = 0; i < rows; i++ ) { |
| 41 | for ( int j = 0; j < cols; j++ ) { |
| 42 | VERIFY_IS_APPROX(m1_rd(i, j), m1(rows - 1 - i, cols - 1 - j)); |
| 43 | } |
| 44 | } |
| 45 | |
| 46 | Reverse<MatrixType, BothDirections> m1_rb(m1); |
| 47 | // Verify that a Reverse in both directions of an expression works |
| 48 | for ( int i = 0; i < rows; i++ ) { |
| 49 | for ( int j = 0; j < cols; j++ ) { |
| 50 | VERIFY_IS_APPROX(m1_rb(i, j), m1(rows - 1 - i, cols - 1 - j)); |
| 51 | } |
| 52 | } |
| 53 | |
| 54 | Reverse<MatrixType, Vertical> m1_rv(m1); |
| 55 | // Verify that a Reverse in the vertical directions of an expression works |
| 56 | for ( int i = 0; i < rows; i++ ) { |
| 57 | for ( int j = 0; j < cols; j++ ) { |
| 58 | VERIFY_IS_APPROX(m1_rv(i, j), m1(rows - 1 - i, j)); |
| 59 | } |
| 60 | } |
| 61 | |
| 62 | Reverse<MatrixType, Horizontal> m1_rh(m1); |
| 63 | // Verify that a Reverse in the horizontal directions of an expression works |
| 64 | for ( int i = 0; i < rows; i++ ) { |
| 65 | for ( int j = 0; j < cols; j++ ) { |
| 66 | VERIFY_IS_APPROX(m1_rh(i, j), m1(i, cols - 1 - j)); |
| 67 | } |
| 68 | } |
| 69 | |
| 70 | VectorType v1_r = v1.reverse(); |
| 71 | // Verify that a VectorType::reverse() of an expression works |
| 72 | for ( int i = 0; i < rows; i++ ) { |
| 73 | VERIFY_IS_APPROX(v1_r(i), v1(rows - 1 - i)); |
| 74 | } |
| 75 | |
| 76 | MatrixType m1_cr = m1.colwise().reverse(); |
| 77 | // Verify that PartialRedux::reverse() works (for colwise()) |
| 78 | for ( int i = 0; i < rows; i++ ) { |
| 79 | for ( int j = 0; j < cols; j++ ) { |
| 80 | VERIFY_IS_APPROX(m1_cr(i, j), m1(rows - 1 - i, j)); |
| 81 | } |
| 82 | } |
| 83 | |
| 84 | MatrixType m1_rr = m1.rowwise().reverse(); |
| 85 | // Verify that PartialRedux::reverse() works (for rowwise()) |
| 86 | for ( int i = 0; i < rows; i++ ) { |
| 87 | for ( int j = 0; j < cols; j++ ) { |
| 88 | VERIFY_IS_APPROX(m1_rr(i, j), m1(i, cols - 1 - j)); |
| 89 | } |
| 90 | } |
| 91 | |
| 92 | Scalar x = internal::random<Scalar>(); |
| 93 | |
| 94 | Index r = internal::random<Index>(0, rows-1), |
| 95 | c = internal::random<Index>(0, cols-1); |
| 96 | |
| 97 | m1.reverse()(r, c) = x; |
| 98 | VERIFY_IS_APPROX(x, m1(rows - 1 - r, cols - 1 - c)); |
| 99 | |
| 100 | /* |
| 101 | m1.colwise().reverse()(r, c) = x; |
| 102 | VERIFY_IS_APPROX(x, m1(rows - 1 - r, c)); |
| 103 | |
| 104 | m1.rowwise().reverse()(r, c) = x; |
| 105 | VERIFY_IS_APPROX(x, m1(r, cols - 1 - c)); |
| 106 | */ |
| 107 | } |
| 108 | |
| 109 | void test_array_reverse() |
| 110 | { |
| 111 | for(int i = 0; i < g_repeat; i++) { |
| 112 | CALL_SUBTEST_1( reverse(Matrix<float, 1, 1>()) ); |
| 113 | CALL_SUBTEST_2( reverse(Matrix2f()) ); |
| 114 | CALL_SUBTEST_3( reverse(Matrix4f()) ); |
| 115 | CALL_SUBTEST_4( reverse(Matrix4d()) ); |
| 116 | CALL_SUBTEST_5( reverse(MatrixXcf(3, 3)) ); |
| 117 | CALL_SUBTEST_6( reverse(MatrixXi(6, 3)) ); |
| 118 | CALL_SUBTEST_7( reverse(MatrixXcd(20, 20)) ); |
| 119 | CALL_SUBTEST_8( reverse(Matrix<float, 100, 100>()) ); |
| 120 | CALL_SUBTEST_9( reverse(Matrix<float,Dynamic,Dynamic,RowMajor>(6,3)) ); |
| 121 | } |
| 122 | #ifdef EIGEN_TEST_PART_3 |
| 123 | Vector4f x; x << 1, 2, 3, 4; |
| 124 | Vector4f y; y << 4, 3, 2, 1; |
| 125 | VERIFY(x.reverse()[1] == 3); |
| 126 | VERIFY(x.reverse() == y); |
| 127 | #endif |
| 128 | } |