Squashed 'third_party/protobuf/' content from commit e35e248

Change-Id: I6cbe123d09fe50fdcad0e51466665daeee7433c7
git-subtree-dir: third_party/protobuf
git-subtree-split: e35e24800fb8d694bdeea5fd63dc7d1b14d68723
diff --git a/src/google/protobuf/io/coded_stream.cc b/src/google/protobuf/io/coded_stream.cc
new file mode 100644
index 0000000..e3a34d0
--- /dev/null
+++ b/src/google/protobuf/io/coded_stream.cc
@@ -0,0 +1,917 @@
+// Protocol Buffers - Google's data interchange format
+// Copyright 2008 Google Inc.  All rights reserved.
+// https://developers.google.com/protocol-buffers/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+//     * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//     * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+//     * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// Author: kenton@google.com (Kenton Varda)
+//  Based on original Protocol Buffers design by
+//  Sanjay Ghemawat, Jeff Dean, and others.
+//
+// This implementation is heavily optimized to make reads and writes
+// of small values (especially varints) as fast as possible.  In
+// particular, we optimize for the common case that a read or a write
+// will not cross the end of the buffer, since we can avoid a lot
+// of branching in this case.
+
+#include <google/protobuf/io/coded_stream_inl.h>
+#include <algorithm>
+#include <utility>
+#include <limits.h>
+#include <google/protobuf/io/zero_copy_stream.h>
+#include <google/protobuf/arena.h>
+#include <google/protobuf/stubs/logging.h>
+#include <google/protobuf/stubs/common.h>
+#include <google/protobuf/stubs/stl_util.h>
+
+
+namespace google {
+namespace protobuf {
+namespace io {
+
+namespace {
+
+static const int kMaxVarintBytes = 10;
+static const int kMaxVarint32Bytes = 5;
+
+
+inline bool NextNonEmpty(ZeroCopyInputStream* input,
+                         const void** data, int* size) {
+  bool success;
+  do {
+    success = input->Next(data, size);
+  } while (success && *size == 0);
+  return success;
+}
+
+}  // namespace
+
+// CodedInputStream ==================================================
+
+CodedInputStream::~CodedInputStream() {
+  if (input_ != NULL) {
+    BackUpInputToCurrentPosition();
+  }
+
+  if (total_bytes_warning_threshold_ == -2) {
+    GOOGLE_LOG(WARNING) << "The total number of bytes read was " << total_bytes_read_;
+  }
+}
+
+// Static.
+int CodedInputStream::default_recursion_limit_ = 100;
+
+
+void CodedOutputStream::EnableAliasing(bool enabled) {
+  aliasing_enabled_ = enabled && output_->AllowsAliasing();
+}
+
+void CodedInputStream::BackUpInputToCurrentPosition() {
+  int backup_bytes = BufferSize() + buffer_size_after_limit_ + overflow_bytes_;
+  if (backup_bytes > 0) {
+    input_->BackUp(backup_bytes);
+
+    // total_bytes_read_ doesn't include overflow_bytes_.
+    total_bytes_read_ -= BufferSize() + buffer_size_after_limit_;
+    buffer_end_ = buffer_;
+    buffer_size_after_limit_ = 0;
+    overflow_bytes_ = 0;
+  }
+}
+
+inline void CodedInputStream::RecomputeBufferLimits() {
+  buffer_end_ += buffer_size_after_limit_;
+  int closest_limit = min(current_limit_, total_bytes_limit_);
+  if (closest_limit < total_bytes_read_) {
+    // The limit position is in the current buffer.  We must adjust
+    // the buffer size accordingly.
+    buffer_size_after_limit_ = total_bytes_read_ - closest_limit;
+    buffer_end_ -= buffer_size_after_limit_;
+  } else {
+    buffer_size_after_limit_ = 0;
+  }
+}
+
+CodedInputStream::Limit CodedInputStream::PushLimit(int byte_limit) {
+  // Current position relative to the beginning of the stream.
+  int current_position = CurrentPosition();
+
+  Limit old_limit = current_limit_;
+
+  // security: byte_limit is possibly evil, so check for negative values
+  // and overflow.
+  if (byte_limit >= 0 &&
+      byte_limit <= INT_MAX - current_position) {
+    current_limit_ = current_position + byte_limit;
+  } else {
+    // Negative or overflow.
+    current_limit_ = INT_MAX;
+  }
+
+  // We need to enforce all limits, not just the new one, so if the previous
+  // limit was before the new requested limit, we continue to enforce the
+  // previous limit.
+  current_limit_ = min(current_limit_, old_limit);
+
+  RecomputeBufferLimits();
+  return old_limit;
+}
+
+void CodedInputStream::PopLimit(Limit limit) {
+  // The limit passed in is actually the *old* limit, which we returned from
+  // PushLimit().
+  current_limit_ = limit;
+  RecomputeBufferLimits();
+
+  // We may no longer be at a legitimate message end.  ReadTag() needs to be
+  // called again to find out.
+  legitimate_message_end_ = false;
+}
+
+std::pair<CodedInputStream::Limit, int>
+CodedInputStream::IncrementRecursionDepthAndPushLimit(int byte_limit) {
+  return std::make_pair(PushLimit(byte_limit), --recursion_budget_);
+}
+
+CodedInputStream::Limit CodedInputStream::ReadLengthAndPushLimit() {
+  uint32 length;
+  return PushLimit(ReadVarint32(&length) ? length : 0);
+}
+
+bool CodedInputStream::DecrementRecursionDepthAndPopLimit(Limit limit) {
+  bool result = ConsumedEntireMessage();
+  PopLimit(limit);
+  GOOGLE_DCHECK_LT(recursion_budget_, recursion_limit_);
+  ++recursion_budget_;
+  return result;
+}
+
+bool CodedInputStream::CheckEntireMessageConsumedAndPopLimit(Limit limit) {
+  bool result = ConsumedEntireMessage();
+  PopLimit(limit);
+  return result;
+}
+
+int CodedInputStream::BytesUntilLimit() const {
+  if (current_limit_ == INT_MAX) return -1;
+  int current_position = CurrentPosition();
+
+  return current_limit_ - current_position;
+}
+
+void CodedInputStream::SetTotalBytesLimit(
+    int total_bytes_limit, int warning_threshold) {
+  // Make sure the limit isn't already past, since this could confuse other
+  // code.
+  int current_position = CurrentPosition();
+  total_bytes_limit_ = max(current_position, total_bytes_limit);
+  if (warning_threshold >= 0) {
+    total_bytes_warning_threshold_ = warning_threshold;
+  } else {
+    // warning_threshold is negative
+    total_bytes_warning_threshold_ = -1;
+  }
+  RecomputeBufferLimits();
+}
+
+int CodedInputStream::BytesUntilTotalBytesLimit() const {
+  if (total_bytes_limit_ == INT_MAX) return -1;
+  return total_bytes_limit_ - CurrentPosition();
+}
+
+void CodedInputStream::PrintTotalBytesLimitError() {
+  GOOGLE_LOG(ERROR) << "A protocol message was rejected because it was too "
+                "big (more than " << total_bytes_limit_
+             << " bytes).  To increase the limit (or to disable these "
+                "warnings), see CodedInputStream::SetTotalBytesLimit() "
+                "in google/protobuf/io/coded_stream.h.";
+}
+
+bool CodedInputStream::Skip(int count) {
+  if (count < 0) return false;  // security: count is often user-supplied
+
+  const int original_buffer_size = BufferSize();
+
+  if (count <= original_buffer_size) {
+    // Just skipping within the current buffer.  Easy.
+    Advance(count);
+    return true;
+  }
+
+  if (buffer_size_after_limit_ > 0) {
+    // We hit a limit inside this buffer.  Advance to the limit and fail.
+    Advance(original_buffer_size);
+    return false;
+  }
+
+  count -= original_buffer_size;
+  buffer_ = NULL;
+  buffer_end_ = buffer_;
+
+  // Make sure this skip doesn't try to skip past the current limit.
+  int closest_limit = min(current_limit_, total_bytes_limit_);
+  int bytes_until_limit = closest_limit - total_bytes_read_;
+  if (bytes_until_limit < count) {
+    // We hit the limit.  Skip up to it then fail.
+    if (bytes_until_limit > 0) {
+      total_bytes_read_ = closest_limit;
+      input_->Skip(bytes_until_limit);
+    }
+    return false;
+  }
+
+  total_bytes_read_ += count;
+  return input_->Skip(count);
+}
+
+bool CodedInputStream::GetDirectBufferPointer(const void** data, int* size) {
+  if (BufferSize() == 0 && !Refresh()) return false;
+
+  *data = buffer_;
+  *size = BufferSize();
+  return true;
+}
+
+bool CodedInputStream::ReadRaw(void* buffer, int size) {
+  return InternalReadRawInline(buffer, size);
+}
+
+bool CodedInputStream::ReadString(string* buffer, int size) {
+  if (size < 0) return false;  // security: size is often user-supplied
+  return InternalReadStringInline(buffer, size);
+}
+
+bool CodedInputStream::ReadStringFallback(string* buffer, int size) {
+  if (!buffer->empty()) {
+    buffer->clear();
+  }
+
+  int closest_limit = min(current_limit_, total_bytes_limit_);
+  if (closest_limit != INT_MAX) {
+    int bytes_to_limit = closest_limit - CurrentPosition();
+    if (bytes_to_limit > 0 && size > 0 && size <= bytes_to_limit) {
+      buffer->reserve(size);
+    }
+  }
+
+  int current_buffer_size;
+  while ((current_buffer_size = BufferSize()) < size) {
+    // Some STL implementations "helpfully" crash on buffer->append(NULL, 0).
+    if (current_buffer_size != 0) {
+      // Note:  string1.append(string2) is O(string2.size()) (as opposed to
+      //   O(string1.size() + string2.size()), which would be bad).
+      buffer->append(reinterpret_cast<const char*>(buffer_),
+                     current_buffer_size);
+    }
+    size -= current_buffer_size;
+    Advance(current_buffer_size);
+    if (!Refresh()) return false;
+  }
+
+  buffer->append(reinterpret_cast<const char*>(buffer_), size);
+  Advance(size);
+
+  return true;
+}
+
+
+bool CodedInputStream::ReadLittleEndian32Fallback(uint32* value) {
+  uint8 bytes[sizeof(*value)];
+
+  const uint8* ptr;
+  if (BufferSize() >= sizeof(*value)) {
+    // Fast path:  Enough bytes in the buffer to read directly.
+    ptr = buffer_;
+    Advance(sizeof(*value));
+  } else {
+    // Slow path:  Had to read past the end of the buffer.
+    if (!ReadRaw(bytes, sizeof(*value))) return false;
+    ptr = bytes;
+  }
+  ReadLittleEndian32FromArray(ptr, value);
+  return true;
+}
+
+bool CodedInputStream::ReadLittleEndian64Fallback(uint64* value) {
+  uint8 bytes[sizeof(*value)];
+
+  const uint8* ptr;
+  if (BufferSize() >= sizeof(*value)) {
+    // Fast path:  Enough bytes in the buffer to read directly.
+    ptr = buffer_;
+    Advance(sizeof(*value));
+  } else {
+    // Slow path:  Had to read past the end of the buffer.
+    if (!ReadRaw(bytes, sizeof(*value))) return false;
+    ptr = bytes;
+  }
+  ReadLittleEndian64FromArray(ptr, value);
+  return true;
+}
+
+namespace {
+
+// Read a varint from the given buffer, write it to *value, and return a pair.
+// The first part of the pair is true iff the read was successful.  The second
+// part is buffer + (number of bytes read).  This function is always inlined,
+// so returning a pair is costless.
+GOOGLE_ATTRIBUTE_ALWAYS_INLINE ::std::pair<bool, const uint8*> ReadVarint32FromArray(
+    uint32 first_byte, const uint8* buffer,
+    uint32* value);
+inline ::std::pair<bool, const uint8*> ReadVarint32FromArray(
+    uint32 first_byte, const uint8* buffer, uint32* value) {
+  // Fast path:  We have enough bytes left in the buffer to guarantee that
+  // this read won't cross the end, so we can skip the checks.
+  GOOGLE_DCHECK_EQ(*buffer, first_byte);
+  GOOGLE_DCHECK_EQ(first_byte & 0x80, 0x80) << first_byte;
+  const uint8* ptr = buffer;
+  uint32 b;
+  uint32 result = first_byte - 0x80;
+  ++ptr;  // We just processed the first byte.  Move on to the second.
+  b = *(ptr++); result += b <<  7; if (!(b & 0x80)) goto done;
+  result -= 0x80 << 7;
+  b = *(ptr++); result += b << 14; if (!(b & 0x80)) goto done;
+  result -= 0x80 << 14;
+  b = *(ptr++); result += b << 21; if (!(b & 0x80)) goto done;
+  result -= 0x80 << 21;
+  b = *(ptr++); result += b << 28; if (!(b & 0x80)) goto done;
+  // "result -= 0x80 << 28" is irrevelant.
+
+  // If the input is larger than 32 bits, we still need to read it all
+  // and discard the high-order bits.
+  for (int i = 0; i < kMaxVarintBytes - kMaxVarint32Bytes; i++) {
+    b = *(ptr++); if (!(b & 0x80)) goto done;
+  }
+
+  // We have overrun the maximum size of a varint (10 bytes).  Assume
+  // the data is corrupt.
+  return std::make_pair(false, ptr);
+
+ done:
+  *value = result;
+  return std::make_pair(true, ptr);
+}
+
+}  // namespace
+
+bool CodedInputStream::ReadVarint32Slow(uint32* value) {
+  // Directly invoke ReadVarint64Fallback, since we already tried to optimize
+  // for one-byte varints.
+  std::pair<uint64, bool> p = ReadVarint64Fallback();
+  *value = static_cast<uint32>(p.first);
+  return p.second;
+}
+
+int64 CodedInputStream::ReadVarint32Fallback(uint32 first_byte_or_zero) {
+  if (BufferSize() >= kMaxVarintBytes ||
+      // Optimization:  We're also safe if the buffer is non-empty and it ends
+      // with a byte that would terminate a varint.
+      (buffer_end_ > buffer_ && !(buffer_end_[-1] & 0x80))) {
+    GOOGLE_DCHECK_NE(first_byte_or_zero, 0)
+        << "Caller should provide us with *buffer_ when buffer is non-empty";
+    uint32 temp;
+    ::std::pair<bool, const uint8*> p =
+          ReadVarint32FromArray(first_byte_or_zero, buffer_, &temp);
+    if (!p.first) return -1;
+    buffer_ = p.second;
+    return temp;
+  } else {
+    // Really slow case: we will incur the cost of an extra function call here,
+    // but moving this out of line reduces the size of this function, which
+    // improves the common case. In micro benchmarks, this is worth about 10-15%
+    uint32 temp;
+    return ReadVarint32Slow(&temp) ? static_cast<int64>(temp) : -1;
+  }
+}
+
+uint32 CodedInputStream::ReadTagSlow() {
+  if (buffer_ == buffer_end_) {
+    // Call refresh.
+    if (!Refresh()) {
+      // Refresh failed.  Make sure that it failed due to EOF, not because
+      // we hit total_bytes_limit_, which, unlike normal limits, is not a
+      // valid place to end a message.
+      int current_position = total_bytes_read_ - buffer_size_after_limit_;
+      if (current_position >= total_bytes_limit_) {
+        // Hit total_bytes_limit_.  But if we also hit the normal limit,
+        // we're still OK.
+        legitimate_message_end_ = current_limit_ == total_bytes_limit_;
+      } else {
+        legitimate_message_end_ = true;
+      }
+      return 0;
+    }
+  }
+
+  // For the slow path, just do a 64-bit read. Try to optimize for one-byte tags
+  // again, since we have now refreshed the buffer.
+  uint64 result = 0;
+  if (!ReadVarint64(&result)) return 0;
+  return static_cast<uint32>(result);
+}
+
+uint32 CodedInputStream::ReadTagFallback(uint32 first_byte_or_zero) {
+  const int buf_size = BufferSize();
+  if (buf_size >= kMaxVarintBytes ||
+      // Optimization:  We're also safe if the buffer is non-empty and it ends
+      // with a byte that would terminate a varint.
+      (buf_size > 0 && !(buffer_end_[-1] & 0x80))) {
+    GOOGLE_DCHECK_EQ(first_byte_or_zero, buffer_[0]);
+    if (first_byte_or_zero == 0) {
+      ++buffer_;
+      return 0;
+    }
+    uint32 tag;
+    ::std::pair<bool, const uint8*> p =
+        ReadVarint32FromArray(first_byte_or_zero, buffer_, &tag);
+    if (!p.first) {
+      return 0;
+    }
+    buffer_ = p.second;
+    return tag;
+  } else {
+    // We are commonly at a limit when attempting to read tags. Try to quickly
+    // detect this case without making another function call.
+    if ((buf_size == 0) &&
+        ((buffer_size_after_limit_ > 0) ||
+         (total_bytes_read_ == current_limit_)) &&
+        // Make sure that the limit we hit is not total_bytes_limit_, since
+        // in that case we still need to call Refresh() so that it prints an
+        // error.
+        total_bytes_read_ - buffer_size_after_limit_ < total_bytes_limit_) {
+      // We hit a byte limit.
+      legitimate_message_end_ = true;
+      return 0;
+    }
+    return ReadTagSlow();
+  }
+}
+
+bool CodedInputStream::ReadVarint64Slow(uint64* value) {
+  // Slow path:  This read might cross the end of the buffer, so we
+  // need to check and refresh the buffer if and when it does.
+
+  uint64 result = 0;
+  int count = 0;
+  uint32 b;
+
+  do {
+    if (count == kMaxVarintBytes) return false;
+    while (buffer_ == buffer_end_) {
+      if (!Refresh()) return false;
+    }
+    b = *buffer_;
+    result |= static_cast<uint64>(b & 0x7F) << (7 * count);
+    Advance(1);
+    ++count;
+  } while (b & 0x80);
+
+  *value = result;
+  return true;
+}
+
+std::pair<uint64, bool> CodedInputStream::ReadVarint64Fallback() {
+  if (BufferSize() >= kMaxVarintBytes ||
+      // Optimization:  We're also safe if the buffer is non-empty and it ends
+      // with a byte that would terminate a varint.
+      (buffer_end_ > buffer_ && !(buffer_end_[-1] & 0x80))) {
+    // Fast path:  We have enough bytes left in the buffer to guarantee that
+    // this read won't cross the end, so we can skip the checks.
+
+    const uint8* ptr = buffer_;
+    uint32 b;
+
+    // Splitting into 32-bit pieces gives better performance on 32-bit
+    // processors.
+    uint32 part0 = 0, part1 = 0, part2 = 0;
+
+    b = *(ptr++); part0  = b      ; if (!(b & 0x80)) goto done;
+    part0 -= 0x80;
+    b = *(ptr++); part0 += b <<  7; if (!(b & 0x80)) goto done;
+    part0 -= 0x80 << 7;
+    b = *(ptr++); part0 += b << 14; if (!(b & 0x80)) goto done;
+    part0 -= 0x80 << 14;
+    b = *(ptr++); part0 += b << 21; if (!(b & 0x80)) goto done;
+    part0 -= 0x80 << 21;
+    b = *(ptr++); part1  = b      ; if (!(b & 0x80)) goto done;
+    part1 -= 0x80;
+    b = *(ptr++); part1 += b <<  7; if (!(b & 0x80)) goto done;
+    part1 -= 0x80 << 7;
+    b = *(ptr++); part1 += b << 14; if (!(b & 0x80)) goto done;
+    part1 -= 0x80 << 14;
+    b = *(ptr++); part1 += b << 21; if (!(b & 0x80)) goto done;
+    part1 -= 0x80 << 21;
+    b = *(ptr++); part2  = b      ; if (!(b & 0x80)) goto done;
+    part2 -= 0x80;
+    b = *(ptr++); part2 += b <<  7; if (!(b & 0x80)) goto done;
+    // "part2 -= 0x80 << 7" is irrelevant because (0x80 << 7) << 56 is 0.
+
+    // We have overrun the maximum size of a varint (10 bytes).  The data
+    // must be corrupt.
+    return std::make_pair(0, false);
+
+   done:
+    Advance(ptr - buffer_);
+    return std::make_pair((static_cast<uint64>(part0)) |
+                              (static_cast<uint64>(part1) << 28) |
+                              (static_cast<uint64>(part2) << 56),
+                          true);
+  } else {
+    uint64 temp;
+    bool success = ReadVarint64Slow(&temp);
+    return std::make_pair(temp, success);
+  }
+}
+
+bool CodedInputStream::Refresh() {
+  GOOGLE_DCHECK_EQ(0, BufferSize());
+
+  if (buffer_size_after_limit_ > 0 || overflow_bytes_ > 0 ||
+      total_bytes_read_ == current_limit_) {
+    // We've hit a limit.  Stop.
+    int current_position = total_bytes_read_ - buffer_size_after_limit_;
+
+    if (current_position >= total_bytes_limit_ &&
+        total_bytes_limit_ != current_limit_) {
+      // Hit total_bytes_limit_.
+      PrintTotalBytesLimitError();
+    }
+
+    return false;
+  }
+
+  if (total_bytes_warning_threshold_ >= 0 &&
+      total_bytes_read_ >= total_bytes_warning_threshold_) {
+      GOOGLE_LOG(WARNING) << "Reading dangerously large protocol message.  If the "
+                      "message turns out to be larger than "
+                   << total_bytes_limit_ << " bytes, parsing will be halted "
+                      "for security reasons.  To increase the limit (or to "
+                      "disable these warnings), see "
+                      "CodedInputStream::SetTotalBytesLimit() in "
+                      "google/protobuf/io/coded_stream.h.";
+
+    // Don't warn again for this stream, and print total size at the end.
+    total_bytes_warning_threshold_ = -2;
+  }
+
+  const void* void_buffer;
+  int buffer_size;
+  if (NextNonEmpty(input_, &void_buffer, &buffer_size)) {
+    buffer_ = reinterpret_cast<const uint8*>(void_buffer);
+    buffer_end_ = buffer_ + buffer_size;
+    GOOGLE_CHECK_GE(buffer_size, 0);
+
+    if (total_bytes_read_ <= INT_MAX - buffer_size) {
+      total_bytes_read_ += buffer_size;
+    } else {
+      // Overflow.  Reset buffer_end_ to not include the bytes beyond INT_MAX.
+      // We can't get that far anyway, because total_bytes_limit_ is guaranteed
+      // to be less than it.  We need to keep track of the number of bytes
+      // we discarded, though, so that we can call input_->BackUp() to back
+      // up over them on destruction.
+
+      // The following line is equivalent to:
+      //   overflow_bytes_ = total_bytes_read_ + buffer_size - INT_MAX;
+      // except that it avoids overflows.  Signed integer overflow has
+      // undefined results according to the C standard.
+      overflow_bytes_ = total_bytes_read_ - (INT_MAX - buffer_size);
+      buffer_end_ -= overflow_bytes_;
+      total_bytes_read_ = INT_MAX;
+    }
+
+    RecomputeBufferLimits();
+    return true;
+  } else {
+    buffer_ = NULL;
+    buffer_end_ = NULL;
+    return false;
+  }
+}
+
+// CodedOutputStream =================================================
+
+CodedOutputStream::CodedOutputStream(ZeroCopyOutputStream* output)
+  : output_(output),
+    buffer_(NULL),
+    buffer_size_(0),
+    total_bytes_(0),
+    had_error_(false),
+    aliasing_enabled_(false) {
+  // Eagerly Refresh() so buffer space is immediately available.
+  Refresh();
+  // The Refresh() may have failed. If the client doesn't write any data,
+  // though, don't consider this an error. If the client does write data, then
+  // another Refresh() will be attempted and it will set the error once again.
+  had_error_ = false;
+}
+
+CodedOutputStream::CodedOutputStream(ZeroCopyOutputStream* output,
+                                     bool do_eager_refresh)
+  : output_(output),
+    buffer_(NULL),
+    buffer_size_(0),
+    total_bytes_(0),
+    had_error_(false),
+    aliasing_enabled_(false) {
+  if (do_eager_refresh) {
+    // Eagerly Refresh() so buffer space is immediately available.
+    Refresh();
+    // The Refresh() may have failed. If the client doesn't write any data,
+    // though, don't consider this an error. If the client does write data, then
+    // another Refresh() will be attempted and it will set the error once again.
+    had_error_ = false;
+  }
+}
+
+CodedOutputStream::~CodedOutputStream() {
+  Trim();
+}
+
+void CodedOutputStream::Trim() {
+  if (buffer_size_ > 0) {
+    output_->BackUp(buffer_size_);
+    total_bytes_ -= buffer_size_;
+    buffer_size_ = 0;
+    buffer_ = NULL;
+  }
+}
+
+bool CodedOutputStream::Skip(int count) {
+  if (count < 0) return false;
+
+  while (count > buffer_size_) {
+    count -= buffer_size_;
+    if (!Refresh()) return false;
+  }
+
+  Advance(count);
+  return true;
+}
+
+bool CodedOutputStream::GetDirectBufferPointer(void** data, int* size) {
+  if (buffer_size_ == 0 && !Refresh()) return false;
+
+  *data = buffer_;
+  *size = buffer_size_;
+  return true;
+}
+
+void CodedOutputStream::WriteRaw(const void* data, int size) {
+  while (buffer_size_ < size) {
+    memcpy(buffer_, data, buffer_size_);
+    size -= buffer_size_;
+    data = reinterpret_cast<const uint8*>(data) + buffer_size_;
+    if (!Refresh()) return;
+  }
+
+  memcpy(buffer_, data, size);
+  Advance(size);
+}
+
+uint8* CodedOutputStream::WriteRawToArray(
+    const void* data, int size, uint8* target) {
+  memcpy(target, data, size);
+  return target + size;
+}
+
+
+void CodedOutputStream::WriteAliasedRaw(const void* data, int size) {
+  if (size < buffer_size_
+      ) {
+    WriteRaw(data, size);
+  } else {
+    Trim();
+
+    total_bytes_ += size;
+    had_error_ |= !output_->WriteAliasedRaw(data, size);
+  }
+}
+
+void CodedOutputStream::WriteLittleEndian32(uint32 value) {
+  uint8 bytes[sizeof(value)];
+
+  bool use_fast = buffer_size_ >= sizeof(value);
+  uint8* ptr = use_fast ? buffer_ : bytes;
+
+  WriteLittleEndian32ToArray(value, ptr);
+
+  if (use_fast) {
+    Advance(sizeof(value));
+  } else {
+    WriteRaw(bytes, sizeof(value));
+  }
+}
+
+void CodedOutputStream::WriteLittleEndian64(uint64 value) {
+  uint8 bytes[sizeof(value)];
+
+  bool use_fast = buffer_size_ >= sizeof(value);
+  uint8* ptr = use_fast ? buffer_ : bytes;
+
+  WriteLittleEndian64ToArray(value, ptr);
+
+  if (use_fast) {
+    Advance(sizeof(value));
+  } else {
+    WriteRaw(bytes, sizeof(value));
+  }
+}
+
+void CodedOutputStream::WriteVarint32SlowPath(uint32 value) {
+  uint8 bytes[kMaxVarint32Bytes];
+  uint8* target = &bytes[0];
+  uint8* end = WriteVarint32ToArray(value, target);
+  int size = end - target;
+  WriteRaw(bytes, size);
+}
+
+inline uint8* CodedOutputStream::WriteVarint64ToArrayInline(
+    uint64 value, uint8* target) {
+  // Splitting into 32-bit pieces gives better performance on 32-bit
+  // processors.
+  uint32 part0 = static_cast<uint32>(value      );
+  uint32 part1 = static_cast<uint32>(value >> 28);
+  uint32 part2 = static_cast<uint32>(value >> 56);
+
+  int size;
+
+  // Here we can't really optimize for small numbers, since the value is
+  // split into three parts.  Cheking for numbers < 128, for instance,
+  // would require three comparisons, since you'd have to make sure part1
+  // and part2 are zero.  However, if the caller is using 64-bit integers,
+  // it is likely that they expect the numbers to often be very large, so
+  // we probably don't want to optimize for small numbers anyway.  Thus,
+  // we end up with a hardcoded binary search tree...
+  if (part2 == 0) {
+    if (part1 == 0) {
+      if (part0 < (1 << 14)) {
+        if (part0 < (1 << 7)) {
+          size = 1; goto size1;
+        } else {
+          size = 2; goto size2;
+        }
+      } else {
+        if (part0 < (1 << 21)) {
+          size = 3; goto size3;
+        } else {
+          size = 4; goto size4;
+        }
+      }
+    } else {
+      if (part1 < (1 << 14)) {
+        if (part1 < (1 << 7)) {
+          size = 5; goto size5;
+        } else {
+          size = 6; goto size6;
+        }
+      } else {
+        if (part1 < (1 << 21)) {
+          size = 7; goto size7;
+        } else {
+          size = 8; goto size8;
+        }
+      }
+    }
+  } else {
+    if (part2 < (1 << 7)) {
+      size = 9; goto size9;
+    } else {
+      size = 10; goto size10;
+    }
+  }
+
+  GOOGLE_LOG(FATAL) << "Can't get here.";
+
+  size10: target[9] = static_cast<uint8>((part2 >>  7) | 0x80);
+  size9 : target[8] = static_cast<uint8>((part2      ) | 0x80);
+  size8 : target[7] = static_cast<uint8>((part1 >> 21) | 0x80);
+  size7 : target[6] = static_cast<uint8>((part1 >> 14) | 0x80);
+  size6 : target[5] = static_cast<uint8>((part1 >>  7) | 0x80);
+  size5 : target[4] = static_cast<uint8>((part1      ) | 0x80);
+  size4 : target[3] = static_cast<uint8>((part0 >> 21) | 0x80);
+  size3 : target[2] = static_cast<uint8>((part0 >> 14) | 0x80);
+  size2 : target[1] = static_cast<uint8>((part0 >>  7) | 0x80);
+  size1 : target[0] = static_cast<uint8>((part0      ) | 0x80);
+
+  target[size-1] &= 0x7F;
+  return target + size;
+}
+
+void CodedOutputStream::WriteVarint64(uint64 value) {
+  if (buffer_size_ >= kMaxVarintBytes) {
+    // Fast path:  We have enough bytes left in the buffer to guarantee that
+    // this write won't cross the end, so we can skip the checks.
+    uint8* target = buffer_;
+
+    uint8* end = WriteVarint64ToArrayInline(value, target);
+    int size = end - target;
+    Advance(size);
+  } else {
+    // Slow path:  This write might cross the end of the buffer, so we
+    // compose the bytes first then use WriteRaw().
+    uint8 bytes[kMaxVarintBytes];
+    int size = 0;
+    while (value > 0x7F) {
+      bytes[size++] = (static_cast<uint8>(value) & 0x7F) | 0x80;
+      value >>= 7;
+    }
+    bytes[size++] = static_cast<uint8>(value) & 0x7F;
+    WriteRaw(bytes, size);
+  }
+}
+
+uint8* CodedOutputStream::WriteVarint64ToArray(
+    uint64 value, uint8* target) {
+  return WriteVarint64ToArrayInline(value, target);
+}
+
+bool CodedOutputStream::Refresh() {
+  void* void_buffer;
+  if (output_->Next(&void_buffer, &buffer_size_)) {
+    buffer_ = reinterpret_cast<uint8*>(void_buffer);
+    total_bytes_ += buffer_size_;
+    return true;
+  } else {
+    buffer_ = NULL;
+    buffer_size_ = 0;
+    had_error_ = true;
+    return false;
+  }
+}
+
+int CodedOutputStream::VarintSize32Fallback(uint32 value) {
+  if (value < (1 << 7)) {
+    return 1;
+  } else if (value < (1 << 14)) {
+    return 2;
+  } else if (value < (1 << 21)) {
+    return 3;
+  } else if (value < (1 << 28)) {
+    return 4;
+  } else {
+    return 5;
+  }
+}
+
+int CodedOutputStream::VarintSize64(uint64 value) {
+  if (value < (1ull << 35)) {
+    if (value < (1ull << 7)) {
+      return 1;
+    } else if (value < (1ull << 14)) {
+      return 2;
+    } else if (value < (1ull << 21)) {
+      return 3;
+    } else if (value < (1ull << 28)) {
+      return 4;
+    } else {
+      return 5;
+    }
+  } else {
+    if (value < (1ull << 42)) {
+      return 6;
+    } else if (value < (1ull << 49)) {
+      return 7;
+    } else if (value < (1ull << 56)) {
+      return 8;
+    } else if (value < (1ull << 63)) {
+      return 9;
+    } else {
+      return 10;
+    }
+  }
+}
+
+uint8* CodedOutputStream::WriteStringWithSizeToArray(const string& str,
+                                                     uint8* target) {
+  GOOGLE_DCHECK_LE(str.size(), kuint32max);
+  target = WriteVarint32ToArray(str.size(), target);
+  return WriteStringToArray(str, target);
+}
+
+}  // namespace io
+}  // namespace protobuf
+}  // namespace google