Squashed 'third_party/cimg/' content from commit 4b66369

Change-Id: I7454d9107a08dba899fd4659731733049165ae0a
git-subtree-dir: third_party/cimg
git-subtree-split: 4b66369ab4e34a46119d6c43e9adce061bb40f4b
diff --git a/examples/image_registration2d.cpp b/examples/image_registration2d.cpp
new file mode 100644
index 0000000..5b940bf
--- /dev/null
+++ b/examples/image_registration2d.cpp
@@ -0,0 +1,216 @@
+/*
+ #
+ #  File        : image_registration2d.cpp
+ #                ( C++ source file )
+ #
+ #  Description : Compute a motion field between two images,
+ #                with a multiscale and variational algorithm.
+ #                This file is a part of the CImg Library project.
+ #                ( http://cimg.eu )
+ #
+ #  Copyright   : David Tschumperle
+ #                ( http://tschumperle.users.greyc.fr/ )
+ #
+ #  License     : CeCILL v2.0
+ #                ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
+ #
+ #  This software is governed by the CeCILL  license under French law and
+ #  abiding by the rules of distribution of free software.  You can  use,
+ #  modify and/ or redistribute the software under the terms of the CeCILL
+ #  license as circulated by CEA, CNRS and INRIA at the following URL
+ #  "http://www.cecill.info".
+ #
+ #  As a counterpart to the access to the source code and  rights to copy,
+ #  modify and redistribute granted by the license, users are provided only
+ #  with a limited warranty  and the software's author,  the holder of the
+ #  economic rights,  and the successive licensors  have only  limited
+ #  liability.
+ #
+ #  In this respect, the user's attention is drawn to the risks associated
+ #  with loading,  using,  modifying and/or developing or reproducing the
+ #  software by the user in light of its specific status of free software,
+ #  that may mean  that it is complicated to manipulate,  and  that  also
+ #  therefore means  that it is reserved for developers  and  experienced
+ #  professionals having in-depth computer knowledge. Users are therefore
+ #  encouraged to load and test the software's suitability as regards their
+ #  requirements in conditions enabling the security of their systems and/or
+ #  data to be ensured and,  more generally, to use and operate it in the
+ #   same conditions as regards security.
+ #
+ #  The fact that you are presently reading this means that you have had
+ #  knowledge of the CeCILL license and that you accept its terms.
+ #
+*/
+
+#include "CImg.h"
+using namespace cimg_library;
+#ifndef cimg_imagepath
+#define cimg_imagepath "img/"
+#endif
+#undef min
+#undef max
+
+// animate_warp() : Create warping animation from two images and a motion field
+//----------------
+void animate_warp(const CImg<unsigned char>& src, const CImg<unsigned char>& dest, const CImg<>& U,
+                  const bool morph, const bool imode, const char *filename,int nb, CImgDisplay& disp) {
+  CImg<unsigned char> visu = (src,dest,src)>'x', warp(src);
+  float t = 0;
+  for (unsigned int iteration = 0; !disp || (!disp.is_closed() && !disp.is_keyQ()); ++iteration) {
+    if (morph) cimg_forXYC(warp,x,y,k) {
+      const float dx = U(x,y,0), dy = U(x,y,1),
+        I1 = (float)src.linear_atXY(x - t*dx, y - t*dy, k),
+        I2 = (float)dest.linear_atXY(x + (1 - t)*dx,y + (1 - t)*dy,k);
+      warp(x,y,k) = (unsigned char)((1 - t)*I1 + t*I2);
+    } else cimg_forXYC(warp,x,y,k) {
+      const float dx = U(x,y,0), dy = U(x,y,1), I1 = (float)src.linear_atXY(x - t*dx, y - t*dy, 0,k);
+      warp(x,y,k) = (unsigned char)I1;
+    }
+    if (disp) visu.draw_image(2*src.width(),warp).display(disp.resize().wait(30));
+    if (filename && *filename && (imode || (int)iteration<nb)) {
+      std::fprintf(stderr,"\r  > frame %d           ",iteration);
+      warp.save(filename,iteration);
+    }
+    t+=1.0f/nb;
+    if (t<0) { t = 0; nb = -nb; }
+    if (t>1) { t = 1; nb = -nb; if (filename && *filename) std::exit(0); }
+  }
+}
+
+// optflow() : multiscale version of the image registration algorithm
+//-----------
+CImg<> optflow(const CImg<>& source, const CImg<>& target,
+               const float smoothness, const float precision, const unsigned int nb_scales, CImgDisplay& disp) {
+  const unsigned int iteration_max = 100000;
+  const float _precision = (float)std::pow(10.0,-(double)precision);
+  const CImg<>
+    src  = source.get_resize(target,3).normalize(0,1),
+    dest = target.get_normalize(0,1);
+  CImg<> U;
+
+  const unsigned int _nb_scales = nb_scales>0?nb_scales:
+    (unsigned int)(2*std::log((double)(std::max(src.width(),src.height()))));
+  for (int scale = _nb_scales - 1; scale>=0; --scale) {
+    const float factor = (float)std::pow(1.5,(double)scale);
+    const unsigned int
+      _sw = (unsigned int)(src.width()/factor), sw = _sw?_sw:1,
+      _sh = (unsigned int)(src.height()/factor), sh = _sh?_sh:1;
+    const CImg<>
+      I1 = src.get_resize(sw,sh,1,-100,2),
+      I2 = dest.get_resize(I1,2);
+    std::fprintf(stderr," * Scale %d\n",scale);
+    if (U) (U*=1.5f).resize(I2.width(),I2.height(),1,-100,3);
+    else U.assign(I2.width(),I2.height(),1,2,0);
+
+    float dt = 2, energy = cimg::type<float>::max();
+    const CImgList<> dI = I2.get_gradient();
+
+    for (unsigned int iteration = 0; iteration<iteration_max; ++iteration) {
+      std::fprintf(stderr,"\r- Iteration %d - E = %g",iteration,energy); std::fflush(stderr);
+      float _energy = 0;
+      cimg_for3XY(U,x,y) {
+        const float
+          X = x + U(x,y,0),
+          Y = y + U(x,y,1);
+
+        float deltaI = 0;
+        cimg_forC(I2,c) deltaI+=(float)(I1(x,y,c) - I2.linear_atXY(X,Y,c));
+
+        float _energy_regul = 0;
+        cimg_forC(U,c) {
+          const float
+            Ux  = 0.5f*(U(_n1x,y,c) - U(_p1x,y,c)),
+            Uy  = 0.5f*(U(x,_n1y,c) - U(x,_p1y,c)),
+            Uxx = U(_n1x,y,c) + U(_p1x,y,c),
+            Uyy = U(x,_n1y,c) + U(x,_p1y,c);
+          U(x,y,c) = (float)( U(x,y,c) + dt*(deltaI*dI[c].linear_atXY(X,Y) +
+                                             smoothness* ( Uxx + Uyy )))/(1 + 4*smoothness*dt);
+          _energy_regul+=Ux*Ux + Uy*Uy;
+        }
+        _energy+=deltaI*deltaI + smoothness*_energy_regul;
+      }
+      const float d_energy = (_energy - energy)/(sw*sh);
+      if (d_energy<=0 && -d_energy<_precision) break;
+      if (d_energy>0) dt*=0.5f;
+      energy = _energy;
+      if (disp) disp.resize();
+      if (disp && disp.is_closed()) std::exit(0);
+      if (disp && !(iteration%300)) {
+        const unsigned char white[] = { 255,255,255 };
+        CImg<unsigned char> tmp = I1.get_warp(U,true,true,1).normalize(0,200);
+        tmp.resize(disp.width(),disp.height()).draw_quiver(U,white,0.7f,15,-14,true).display(disp);
+      }
+    }
+    std::fprintf(stderr,"\n");
+  }
+  return U;
+}
+
+/*------------------------
+
+  Main function
+
+  ------------------------*/
+
+int main(int argc,char **argv) {
+
+  // Read command line parameters
+  cimg_usage("Compute an optical flow between two 2D images, and create a warped animation");
+  const char
+    *name_i1 = cimg_option("-i",cimg_imagepath "sh0r.pgm","Input Image 1 (Destination)"),
+    *name_i2 = cimg_option("-i2",cimg_imagepath "sh1r.pgm","Input Image 2 (Source)"),
+    *name_o = cimg_option("-o",(const char*)NULL,"Output 2D flow (inrimage)"),
+    *name_seq = cimg_option("-o2",(const char*)NULL,"Output Warping Sequence");
+  const float
+    smoothness = cimg_option("-s",0.1f,"Flow Smoothness"),
+    precision = cimg_option("-p",6.0f,"Convergence precision");
+  const unsigned int
+    nb = cimg_option("-n",40,"Number of warped frames"),
+    nb_scales = cimg_option("-scale",0,"Number of scales (0=auto)");
+  const bool
+    normalize = cimg_option("-equalize",true,"Histogram normalization of the images"),
+    morph = cimg_option("-m",true,"Morphing mode"),
+    imode = cimg_option("-c",true,"Complete interpolation (or last frame is missing)"),
+    dispflag = !cimg_option("-novisu",false,"Visualization");
+
+  // Init images and display
+  std::fprintf(stderr," - Init images.\n");
+  const CImg<>
+    src(name_i1),
+    dest(CImg<>(name_i2).resize(src,3)),
+    src_blur  = normalize?src.get_blur(0.5f).equalize(256):src.get_blur(0.5f),
+    dest_blur = normalize?dest.get_blur(0.5f).equalize(256):dest.get_blur(0.5f);
+
+  CImgDisplay disp;
+  if (dispflag) {
+    unsigned int w = src.width(), h = src.height();
+    const unsigned int dmin = std::min(w,h), minsiz = 512;
+    if (dmin<minsiz) { w=w*minsiz/dmin; h=h*minsiz/dmin; }
+    const unsigned int dmax = std::max(w,h), maxsiz = 1024;
+    if (dmax>maxsiz) { w=w*maxsiz/dmax; h=h*maxsiz/dmax; }
+    disp.assign(w,h,"Estimated Motion",0);
+  }
+
+  // Run Motion estimation algorithm
+  std::fprintf(stderr," - Compute optical flow.\n");
+  const CImg<> U = optflow(src_blur,dest_blur,smoothness,precision,nb_scales,disp);
+  if (name_o) U.save(name_o);
+  U.print("Computed flow");
+
+  // Do morphing animation
+  std::fprintf(stderr," - Create warped animation.\n");
+  CImgDisplay disp2;
+  if (dispflag) {
+    unsigned int w = src.width(), h = src.height();
+    const unsigned int dmin = std::min(w,h), minsiz = 100;
+    if (dmin<minsiz) { w = w*minsiz/dmin; h=h*minsiz/dmin; }
+    const unsigned int dmax = std::max(w,h), maxsiz = 1024/3;
+    if (dmax>maxsiz) { w = w*maxsiz/dmax; h=h*maxsiz/dmax; }
+    disp2.assign(3*w,h,"Source/Destination images and Motion animation",0);
+  }
+
+  animate_warp(src.get_normalize(0,255),dest.get_normalize(0,255),U,morph,imode,name_seq,nb,disp2);
+
+  std::exit(0);
+  return 0;
+}