Squashed 'third_party/eigen/' content from commit 61d72f6

Change-Id: Iccc90fa0b55ab44037f018046d2fcffd90d9d025
git-subtree-dir: third_party/eigen
git-subtree-split: 61d72f6383cfa842868c53e30e087b0258177257
diff --git a/test/visitor.cpp b/test/visitor.cpp
new file mode 100644
index 0000000..39a5d6b
--- /dev/null
+++ b/test/visitor.cpp
@@ -0,0 +1,130 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "main.h"
+
+template<typename MatrixType> void matrixVisitor(const MatrixType& p)
+{
+  typedef typename MatrixType::Scalar Scalar;
+  typedef typename MatrixType::Index Index;
+
+  Index rows = p.rows();
+  Index cols = p.cols();
+
+  // construct a random matrix where all coefficients are different
+  MatrixType m;
+  m = MatrixType::Random(rows, cols);
+  for(Index i = 0; i < m.size(); i++)
+    for(Index i2 = 0; i2 < i; i2++)
+      while(m(i) == m(i2)) // yes, ==
+        m(i) = internal::random<Scalar>();
+  
+  Scalar minc = Scalar(1000), maxc = Scalar(-1000);
+  Index minrow=0,mincol=0,maxrow=0,maxcol=0;
+  for(Index j = 0; j < cols; j++)
+  for(Index i = 0; i < rows; i++)
+  {
+    if(m(i,j) < minc)
+    {
+      minc = m(i,j);
+      minrow = i;
+      mincol = j;
+    }
+    if(m(i,j) > maxc)
+    {
+      maxc = m(i,j);
+      maxrow = i;
+      maxcol = j;
+    }
+  }
+  Index eigen_minrow, eigen_mincol, eigen_maxrow, eigen_maxcol;
+  Scalar eigen_minc, eigen_maxc;
+  eigen_minc = m.minCoeff(&eigen_minrow,&eigen_mincol);
+  eigen_maxc = m.maxCoeff(&eigen_maxrow,&eigen_maxcol);
+  VERIFY(minrow == eigen_minrow);
+  VERIFY(maxrow == eigen_maxrow);
+  VERIFY(mincol == eigen_mincol);
+  VERIFY(maxcol == eigen_maxcol);
+  VERIFY_IS_APPROX(minc, eigen_minc);
+  VERIFY_IS_APPROX(maxc, eigen_maxc);
+  VERIFY_IS_APPROX(minc, m.minCoeff());
+  VERIFY_IS_APPROX(maxc, m.maxCoeff());
+}
+
+template<typename VectorType> void vectorVisitor(const VectorType& w)
+{
+  typedef typename VectorType::Scalar Scalar;
+  typedef typename VectorType::Index Index;
+
+  Index size = w.size();
+
+  // construct a random vector where all coefficients are different
+  VectorType v;
+  v = VectorType::Random(size);
+  for(Index i = 0; i < size; i++)
+    for(Index i2 = 0; i2 < i; i2++)
+      while(v(i) == v(i2)) // yes, ==
+        v(i) = internal::random<Scalar>();
+  
+  Scalar minc = v(0), maxc = v(0);
+  Index minidx=0, maxidx=0;
+  for(Index i = 0; i < size; i++)
+  {
+    if(v(i) < minc)
+    {
+      minc = v(i);
+      minidx = i;
+    }
+    if(v(i) > maxc)
+    {
+      maxc = v(i);
+      maxidx = i;
+    }
+  }
+  Index eigen_minidx, eigen_maxidx;
+  Scalar eigen_minc, eigen_maxc;
+  eigen_minc = v.minCoeff(&eigen_minidx);
+  eigen_maxc = v.maxCoeff(&eigen_maxidx);
+  VERIFY(minidx == eigen_minidx);
+  VERIFY(maxidx == eigen_maxidx);
+  VERIFY_IS_APPROX(minc, eigen_minc);
+  VERIFY_IS_APPROX(maxc, eigen_maxc);
+  VERIFY_IS_APPROX(minc, v.minCoeff());
+  VERIFY_IS_APPROX(maxc, v.maxCoeff());
+  
+  Index idx0 = internal::random<Index>(0,size-1);
+  Index idx1 = eigen_minidx;
+  Index idx2 = eigen_maxidx;
+  VectorType v1(v), v2(v);
+  v1(idx0) = v1(idx1);
+  v2(idx0) = v2(idx2);
+  v1.minCoeff(&eigen_minidx);
+  v2.maxCoeff(&eigen_maxidx);
+  VERIFY(eigen_minidx == (std::min)(idx0,idx1));
+  VERIFY(eigen_maxidx == (std::min)(idx0,idx2));
+}
+
+void test_visitor()
+{
+  for(int i = 0; i < g_repeat; i++) {
+    CALL_SUBTEST_1( matrixVisitor(Matrix<float, 1, 1>()) );
+    CALL_SUBTEST_2( matrixVisitor(Matrix2f()) );
+    CALL_SUBTEST_3( matrixVisitor(Matrix4d()) );
+    CALL_SUBTEST_4( matrixVisitor(MatrixXd(8, 12)) );
+    CALL_SUBTEST_5( matrixVisitor(Matrix<double,Dynamic,Dynamic,RowMajor>(20, 20)) );
+    CALL_SUBTEST_6( matrixVisitor(MatrixXi(8, 12)) );
+  }
+  for(int i = 0; i < g_repeat; i++) {
+    CALL_SUBTEST_7( vectorVisitor(Vector4f()) );
+    CALL_SUBTEST_7( vectorVisitor(Matrix<int,12,1>()) );
+    CALL_SUBTEST_8( vectorVisitor(VectorXd(10)) );
+    CALL_SUBTEST_9( vectorVisitor(RowVectorXd(10)) );
+    CALL_SUBTEST_10( vectorVisitor(VectorXf(33)) );
+  }
+}