Squashed 'third_party/eigen/' content from commit 61d72f6

Change-Id: Iccc90fa0b55ab44037f018046d2fcffd90d9d025
git-subtree-dir: third_party/eigen
git-subtree-split: 61d72f6383cfa842868c53e30e087b0258177257
diff --git a/test/sparse_solver.h b/test/sparse_solver.h
new file mode 100644
index 0000000..59d77da
--- /dev/null
+++ b/test/sparse_solver.h
@@ -0,0 +1,362 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2011 Gael Guennebaud <g.gael@free.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "sparse.h"
+#include <Eigen/SparseCore>
+
+template<typename Solver, typename Rhs, typename DenseMat, typename DenseRhs>
+void check_sparse_solving(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const DenseMat& dA, const DenseRhs& db)
+{
+  typedef typename Solver::MatrixType Mat;
+  typedef typename Mat::Scalar Scalar;
+
+  DenseRhs refX = dA.lu().solve(db);
+  {
+    Rhs x(b.rows(), b.cols());
+    Rhs oldb = b;
+
+    solver.compute(A);
+    if (solver.info() != Success)
+    {
+      std::cerr << "sparse solver testing: factorization failed (check_sparse_solving)\n";
+      exit(0);
+      return;
+    }
+    x = solver.solve(b);
+    if (solver.info() != Success)
+    {
+      std::cerr << "sparse solver testing: solving failed\n";
+      return;
+    }
+    VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
+
+    VERIFY(x.isApprox(refX,test_precision<Scalar>()));
+    x.setZero();
+    // test the analyze/factorize API
+    solver.analyzePattern(A);
+    solver.factorize(A);
+    if (solver.info() != Success)
+    {
+      std::cerr << "sparse solver testing: factorization failed (check_sparse_solving)\n";
+      exit(0);
+      return;
+    }
+    x = solver.solve(b);
+    if (solver.info() != Success)
+    {
+      std::cerr << "sparse solver testing: solving failed\n";
+      return;
+    }
+    VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
+
+    VERIFY(x.isApprox(refX,test_precision<Scalar>()));
+  }
+  
+  // test dense Block as the result and rhs:
+  {
+    DenseRhs x(db.rows(), db.cols());
+    DenseRhs oldb(db);
+    x.setZero();
+    x.block(0,0,x.rows(),x.cols()) = solver.solve(db.block(0,0,db.rows(),db.cols()));
+    VERIFY(oldb.isApprox(db) && "sparse solver testing: the rhs should not be modified!");
+    VERIFY(x.isApprox(refX,test_precision<Scalar>()));
+  }
+}
+
+template<typename Solver, typename Rhs>
+void check_sparse_solving_real_cases(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const Rhs& refX)
+{
+  typedef typename Solver::MatrixType Mat;
+  typedef typename Mat::Scalar Scalar;
+  typedef typename Mat::RealScalar RealScalar;
+  
+  Rhs x(b.rows(), b.cols());
+  
+  solver.compute(A);
+  if (solver.info() != Success)
+  {
+    std::cerr << "sparse solver testing: factorization failed (check_sparse_solving_real_cases)\n";
+    exit(0);
+    return;
+  }
+  x = solver.solve(b);
+  if (solver.info() != Success)
+  {
+    std::cerr << "sparse solver testing: solving failed\n";
+    return;
+  }
+  
+  RealScalar res_error;
+  // Compute the norm of the relative error
+  if(refX.size() != 0)
+    res_error = (refX - x).norm()/refX.norm();
+  else
+  { 
+    // Compute the relative residual norm
+    res_error = (b - A * x).norm()/b.norm();
+  }
+  if (res_error > test_precision<Scalar>() ){
+    std::cerr << "Test " << g_test_stack.back() << " failed in "EI_PP_MAKE_STRING(__FILE__) 
+    << " (" << EI_PP_MAKE_STRING(__LINE__) << ")" << std::endl << std::endl;
+    abort();
+  }
+  
+}
+template<typename Solver, typename DenseMat>
+void check_sparse_determinant(Solver& solver, const typename Solver::MatrixType& A, const DenseMat& dA)
+{
+  typedef typename Solver::MatrixType Mat;
+  typedef typename Mat::Scalar Scalar;
+  
+  solver.compute(A);
+  if (solver.info() != Success)
+  {
+    std::cerr << "sparse solver testing: factorization failed (check_sparse_determinant)\n";
+    return;
+  }
+
+  Scalar refDet = dA.determinant();
+  VERIFY_IS_APPROX(refDet,solver.determinant());
+}
+template<typename Solver, typename DenseMat>
+void check_sparse_abs_determinant(Solver& solver, const typename Solver::MatrixType& A, const DenseMat& dA)
+{
+  using std::abs;
+  typedef typename Solver::MatrixType Mat;
+  typedef typename Mat::Scalar Scalar;
+  
+  solver.compute(A);
+  if (solver.info() != Success)
+  {
+    std::cerr << "sparse solver testing: factorization failed (check_sparse_abs_determinant)\n";
+    return;
+  }
+
+  Scalar refDet = abs(dA.determinant());
+  VERIFY_IS_APPROX(refDet,solver.absDeterminant());
+}
+
+template<typename Solver, typename DenseMat>
+int generate_sparse_spd_problem(Solver& , typename Solver::MatrixType& A, typename Solver::MatrixType& halfA, DenseMat& dA, int maxSize = 300)
+{
+  typedef typename Solver::MatrixType Mat;
+  typedef typename Mat::Scalar Scalar;
+  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
+
+  int size = internal::random<int>(1,maxSize);
+  double density = (std::max)(8./(size*size), 0.01);
+
+  Mat M(size, size);
+  DenseMatrix dM(size, size);
+
+  initSparse<Scalar>(density, dM, M, ForceNonZeroDiag);
+
+  A = M * M.adjoint();
+  dA = dM * dM.adjoint();
+  
+  halfA.resize(size,size);
+  if(Solver::UpLo==(Lower|Upper))
+    halfA = A;
+  else
+    halfA.template selfadjointView<Solver::UpLo>().rankUpdate(M);
+  
+  return size;
+}
+
+
+#ifdef TEST_REAL_CASES
+template<typename Scalar>
+inline std::string get_matrixfolder()
+{
+  std::string mat_folder = TEST_REAL_CASES; 
+  if( internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value )
+    mat_folder  = mat_folder + static_cast<std::string>("/complex/");
+  else
+    mat_folder = mat_folder + static_cast<std::string>("/real/");
+  return mat_folder;
+}
+#endif
+
+template<typename Solver> void check_sparse_spd_solving(Solver& solver)
+{
+  typedef typename Solver::MatrixType Mat;
+  typedef typename Mat::Scalar Scalar;
+  typedef SparseMatrix<Scalar,ColMajor> SpMat;
+  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
+  typedef Matrix<Scalar,Dynamic,1> DenseVector;
+
+  // generate the problem
+  Mat A, halfA;
+  DenseMatrix dA;
+  for (int i = 0; i < g_repeat; i++) {
+    int size = generate_sparse_spd_problem(solver, A, halfA, dA);
+
+    // generate the right hand sides
+    int rhsCols = internal::random<int>(1,16);
+    double density = (std::max)(8./(size*rhsCols), 0.1);
+    SpMat B(size,rhsCols);
+    DenseVector b = DenseVector::Random(size);
+    DenseMatrix dB(size,rhsCols);
+    initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
+  
+    check_sparse_solving(solver, A,     b,  dA, b);
+    check_sparse_solving(solver, halfA, b,  dA, b);
+    check_sparse_solving(solver, A,     dB, dA, dB);
+    check_sparse_solving(solver, halfA, dB, dA, dB);
+    check_sparse_solving(solver, A,     B,  dA, dB);
+    check_sparse_solving(solver, halfA, B,  dA, dB);
+    
+    // check only once
+    if(i==0)
+    {
+      b = DenseVector::Zero(size);
+      check_sparse_solving(solver, A, b, dA, b);
+    }
+  }
+  
+  // First, get the folder 
+#ifdef TEST_REAL_CASES  
+  if (internal::is_same<Scalar, float>::value 
+      || internal::is_same<Scalar, std::complex<float> >::value)
+    return ;
+  
+  std::string mat_folder = get_matrixfolder<Scalar>();
+  MatrixMarketIterator<Scalar> it(mat_folder);
+  for (; it; ++it)
+  {
+    if (it.sym() == SPD){
+      Mat halfA;
+      PermutationMatrix<Dynamic, Dynamic, Index> pnull;
+      halfA.template selfadjointView<Solver::UpLo>() = it.matrix().template triangularView<Eigen::Lower>().twistedBy(pnull);
+      
+      std::cout<< " ==== SOLVING WITH MATRIX " << it.matname() << " ==== \n";
+      check_sparse_solving_real_cases(solver, it.matrix(), it.rhs(), it.refX());
+      check_sparse_solving_real_cases(solver, halfA, it.rhs(), it.refX());
+    }
+  }
+#endif
+}
+
+template<typename Solver> void check_sparse_spd_determinant(Solver& solver)
+{
+  typedef typename Solver::MatrixType Mat;
+  typedef typename Mat::Scalar Scalar;
+  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
+
+  // generate the problem
+  Mat A, halfA;
+  DenseMatrix dA;
+  generate_sparse_spd_problem(solver, A, halfA, dA, 30);
+  
+  for (int i = 0; i < g_repeat; i++) {
+    check_sparse_determinant(solver, A,     dA);
+    check_sparse_determinant(solver, halfA, dA );
+  }
+}
+
+template<typename Solver, typename DenseMat>
+int generate_sparse_square_problem(Solver&, typename Solver::MatrixType& A, DenseMat& dA, int maxSize = 300)
+{
+  typedef typename Solver::MatrixType Mat;
+  typedef typename Mat::Scalar Scalar;
+
+  int size = internal::random<int>(1,maxSize);
+  double density = (std::max)(8./(size*size), 0.01);
+  
+  A.resize(size,size);
+  dA.resize(size,size);
+
+  initSparse<Scalar>(density, dA, A, ForceNonZeroDiag);
+  
+  return size;
+}
+
+template<typename Solver> void check_sparse_square_solving(Solver& solver)
+{
+  typedef typename Solver::MatrixType Mat;
+  typedef typename Mat::Scalar Scalar;
+  typedef SparseMatrix<Scalar,ColMajor> SpMat;
+  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
+  typedef Matrix<Scalar,Dynamic,1> DenseVector;
+
+  int rhsCols = internal::random<int>(1,16);
+
+  Mat A;
+  DenseMatrix dA;
+  for (int i = 0; i < g_repeat; i++) {
+    int size = generate_sparse_square_problem(solver, A, dA);
+
+    A.makeCompressed();
+    DenseVector b = DenseVector::Random(size);
+    DenseMatrix dB(size,rhsCols);
+    SpMat B(size,rhsCols);
+    double density = (std::max)(8./(size*rhsCols), 0.1);
+    initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
+    B.makeCompressed();
+    check_sparse_solving(solver, A, b,  dA, b);
+    check_sparse_solving(solver, A, dB, dA, dB);
+    check_sparse_solving(solver, A, B,  dA, dB);
+    
+    // check only once
+    if(i==0)
+    {
+      b = DenseVector::Zero(size);
+      check_sparse_solving(solver, A, b, dA, b);
+    }
+  }
+  
+  // First, get the folder 
+#ifdef TEST_REAL_CASES
+  if (internal::is_same<Scalar, float>::value 
+      || internal::is_same<Scalar, std::complex<float> >::value)
+    return ;
+  
+  std::string mat_folder = get_matrixfolder<Scalar>();
+  MatrixMarketIterator<Scalar> it(mat_folder);
+  for (; it; ++it)
+  {
+    std::cout<< " ==== SOLVING WITH MATRIX " << it.matname() << " ==== \n";
+    check_sparse_solving_real_cases(solver, it.matrix(), it.rhs(), it.refX());
+  }
+#endif
+
+}
+
+template<typename Solver> void check_sparse_square_determinant(Solver& solver)
+{
+  typedef typename Solver::MatrixType Mat;
+  typedef typename Mat::Scalar Scalar;
+  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
+
+  // generate the problem
+  Mat A;
+  DenseMatrix dA;
+  generate_sparse_square_problem(solver, A, dA, 30);
+  A.makeCompressed();
+  for (int i = 0; i < g_repeat; i++) {
+    check_sparse_determinant(solver, A, dA);
+  }
+}
+
+template<typename Solver> void check_sparse_square_abs_determinant(Solver& solver)
+{
+  typedef typename Solver::MatrixType Mat;
+  typedef typename Mat::Scalar Scalar;
+  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
+
+  // generate the problem
+  Mat A;
+  DenseMatrix dA;
+  generate_sparse_square_problem(solver, A, dA, 30);
+  A.makeCompressed();
+  for (int i = 0; i < g_repeat; i++) {
+    check_sparse_abs_determinant(solver, A, dA);
+  }
+}
+