Squashed 'third_party/eigen/' content from commit 61d72f6

Change-Id: Iccc90fa0b55ab44037f018046d2fcffd90d9d025
git-subtree-dir: third_party/eigen
git-subtree-split: 61d72f6383cfa842868c53e30e087b0258177257
diff --git a/test/lu.cpp b/test/lu.cpp
new file mode 100644
index 0000000..3746526
--- /dev/null
+++ b/test/lu.cpp
@@ -0,0 +1,210 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "main.h"
+#include <Eigen/LU>
+using namespace std;
+
+template<typename MatrixType> void lu_non_invertible()
+{
+  typedef typename MatrixType::Index Index;
+  typedef typename MatrixType::RealScalar RealScalar;
+  /* this test covers the following files:
+     LU.h
+  */
+  Index rows, cols, cols2;
+  if(MatrixType::RowsAtCompileTime==Dynamic)
+  {
+    rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
+  }
+  else
+  {
+    rows = MatrixType::RowsAtCompileTime;
+  }
+  if(MatrixType::ColsAtCompileTime==Dynamic)
+  {
+    cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
+    cols2 = internal::random<int>(2,EIGEN_TEST_MAX_SIZE);
+  }
+  else
+  {
+    cols2 = cols = MatrixType::ColsAtCompileTime;
+  }
+
+  enum {
+    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+    ColsAtCompileTime = MatrixType::ColsAtCompileTime
+  };
+  typedef typename internal::kernel_retval_base<FullPivLU<MatrixType> >::ReturnType KernelMatrixType;
+  typedef typename internal::image_retval_base<FullPivLU<MatrixType> >::ReturnType ImageMatrixType;
+  typedef Matrix<typename MatrixType::Scalar, ColsAtCompileTime, ColsAtCompileTime>
+          CMatrixType;
+  typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, RowsAtCompileTime>
+          RMatrixType;
+
+  Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
+
+  // The image of the zero matrix should consist of a single (zero) column vector
+  VERIFY((MatrixType::Zero(rows,cols).fullPivLu().image(MatrixType::Zero(rows,cols)).cols() == 1));
+
+  MatrixType m1(rows, cols), m3(rows, cols2);
+  CMatrixType m2(cols, cols2);
+  createRandomPIMatrixOfRank(rank, rows, cols, m1);
+
+  FullPivLU<MatrixType> lu;
+
+  // The special value 0.01 below works well in tests. Keep in mind that we're only computing the rank
+  // of singular values are either 0 or 1.
+  // So it's not clear at all that the epsilon should play any role there.
+  lu.setThreshold(RealScalar(0.01));
+  lu.compute(m1);
+
+  MatrixType u(rows,cols);
+  u = lu.matrixLU().template triangularView<Upper>();
+  RMatrixType l = RMatrixType::Identity(rows,rows);
+  l.block(0,0,rows,(std::min)(rows,cols)).template triangularView<StrictlyLower>()
+    = lu.matrixLU().block(0,0,rows,(std::min)(rows,cols));
+
+  VERIFY_IS_APPROX(lu.permutationP() * m1 * lu.permutationQ(), l*u);
+
+  KernelMatrixType m1kernel = lu.kernel();
+  ImageMatrixType m1image = lu.image(m1);
+
+  VERIFY_IS_APPROX(m1, lu.reconstructedMatrix());
+  VERIFY(rank == lu.rank());
+  VERIFY(cols - lu.rank() == lu.dimensionOfKernel());
+  VERIFY(!lu.isInjective());
+  VERIFY(!lu.isInvertible());
+  VERIFY(!lu.isSurjective());
+  VERIFY((m1 * m1kernel).isMuchSmallerThan(m1));
+  VERIFY(m1image.fullPivLu().rank() == rank);
+  VERIFY_IS_APPROX(m1 * m1.adjoint() * m1image, m1image);
+
+  m2 = CMatrixType::Random(cols,cols2);
+  m3 = m1*m2;
+  m2 = CMatrixType::Random(cols,cols2);
+  // test that the code, which does resize(), may be applied to an xpr
+  m2.block(0,0,m2.rows(),m2.cols()) = lu.solve(m3);
+  VERIFY_IS_APPROX(m3, m1*m2);
+}
+
+template<typename MatrixType> void lu_invertible()
+{
+  /* this test covers the following files:
+     LU.h
+  */
+  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
+  DenseIndex size = MatrixType::RowsAtCompileTime;
+  if( size==Dynamic)
+    size = internal::random<DenseIndex>(1,EIGEN_TEST_MAX_SIZE);
+
+  MatrixType m1(size, size), m2(size, size), m3(size, size);
+  FullPivLU<MatrixType> lu;
+  lu.setThreshold(RealScalar(0.01));
+  do {
+    m1 = MatrixType::Random(size,size);
+    lu.compute(m1);
+  } while(!lu.isInvertible());
+
+  VERIFY_IS_APPROX(m1, lu.reconstructedMatrix());
+  VERIFY(0 == lu.dimensionOfKernel());
+  VERIFY(lu.kernel().cols() == 1); // the kernel() should consist of a single (zero) column vector
+  VERIFY(size == lu.rank());
+  VERIFY(lu.isInjective());
+  VERIFY(lu.isSurjective());
+  VERIFY(lu.isInvertible());
+  VERIFY(lu.image(m1).fullPivLu().isInvertible());
+  m3 = MatrixType::Random(size,size);
+  m2 = lu.solve(m3);
+  VERIFY_IS_APPROX(m3, m1*m2);
+  VERIFY_IS_APPROX(m2, lu.inverse()*m3);
+
+  // Regression test for Bug 302
+  MatrixType m4 = MatrixType::Random(size,size);
+  VERIFY_IS_APPROX(lu.solve(m3*m4), lu.solve(m3)*m4);
+}
+
+template<typename MatrixType> void lu_partial_piv()
+{
+  /* this test covers the following files:
+     PartialPivLU.h
+  */
+  typedef typename MatrixType::Index Index;
+  Index rows = internal::random<Index>(1,4);
+  Index cols = rows;
+
+  MatrixType m1(cols, rows);
+  m1.setRandom();
+  PartialPivLU<MatrixType> plu(m1);
+
+  VERIFY_IS_APPROX(m1, plu.reconstructedMatrix());
+}
+
+template<typename MatrixType> void lu_verify_assert()
+{
+  MatrixType tmp;
+
+  FullPivLU<MatrixType> lu;
+  VERIFY_RAISES_ASSERT(lu.matrixLU())
+  VERIFY_RAISES_ASSERT(lu.permutationP())
+  VERIFY_RAISES_ASSERT(lu.permutationQ())
+  VERIFY_RAISES_ASSERT(lu.kernel())
+  VERIFY_RAISES_ASSERT(lu.image(tmp))
+  VERIFY_RAISES_ASSERT(lu.solve(tmp))
+  VERIFY_RAISES_ASSERT(lu.determinant())
+  VERIFY_RAISES_ASSERT(lu.rank())
+  VERIFY_RAISES_ASSERT(lu.dimensionOfKernel())
+  VERIFY_RAISES_ASSERT(lu.isInjective())
+  VERIFY_RAISES_ASSERT(lu.isSurjective())
+  VERIFY_RAISES_ASSERT(lu.isInvertible())
+  VERIFY_RAISES_ASSERT(lu.inverse())
+
+  PartialPivLU<MatrixType> plu;
+  VERIFY_RAISES_ASSERT(plu.matrixLU())
+  VERIFY_RAISES_ASSERT(plu.permutationP())
+  VERIFY_RAISES_ASSERT(plu.solve(tmp))
+  VERIFY_RAISES_ASSERT(plu.determinant())
+  VERIFY_RAISES_ASSERT(plu.inverse())
+}
+
+void test_lu()
+{
+  for(int i = 0; i < g_repeat; i++) {
+    CALL_SUBTEST_1( lu_non_invertible<Matrix3f>() );
+    CALL_SUBTEST_1( lu_invertible<Matrix3f>() );
+    CALL_SUBTEST_1( lu_verify_assert<Matrix3f>() );
+
+    CALL_SUBTEST_2( (lu_non_invertible<Matrix<double, 4, 6> >()) );
+    CALL_SUBTEST_2( (lu_verify_assert<Matrix<double, 4, 6> >()) );
+
+    CALL_SUBTEST_3( lu_non_invertible<MatrixXf>() );
+    CALL_SUBTEST_3( lu_invertible<MatrixXf>() );
+    CALL_SUBTEST_3( lu_verify_assert<MatrixXf>() );
+
+    CALL_SUBTEST_4( lu_non_invertible<MatrixXd>() );
+    CALL_SUBTEST_4( lu_invertible<MatrixXd>() );
+    CALL_SUBTEST_4( lu_partial_piv<MatrixXd>() );
+    CALL_SUBTEST_4( lu_verify_assert<MatrixXd>() );
+
+    CALL_SUBTEST_5( lu_non_invertible<MatrixXcf>() );
+    CALL_SUBTEST_5( lu_invertible<MatrixXcf>() );
+    CALL_SUBTEST_5( lu_verify_assert<MatrixXcf>() );
+
+    CALL_SUBTEST_6( lu_non_invertible<MatrixXcd>() );
+    CALL_SUBTEST_6( lu_invertible<MatrixXcd>() );
+    CALL_SUBTEST_6( lu_partial_piv<MatrixXcd>() );
+    CALL_SUBTEST_6( lu_verify_assert<MatrixXcd>() );
+
+    CALL_SUBTEST_7(( lu_non_invertible<Matrix<float,Dynamic,16> >() ));
+
+    // Test problem size constructors
+    CALL_SUBTEST_9( PartialPivLU<MatrixXf>(10) );
+    CALL_SUBTEST_9( FullPivLU<MatrixXf>(10, 20); );
+  }
+}