Squashed 'third_party/eigen/' content from commit 61d72f6

Change-Id: Iccc90fa0b55ab44037f018046d2fcffd90d9d025
git-subtree-dir: third_party/eigen
git-subtree-split: 61d72f6383cfa842868c53e30e087b0258177257
diff --git a/test/eigen2/eigen2_submatrices.cpp b/test/eigen2/eigen2_submatrices.cpp
new file mode 100644
index 0000000..dee970b
--- /dev/null
+++ b/test/eigen2/eigen2_submatrices.cpp
@@ -0,0 +1,142 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra. Eigen itself is part of the KDE project.
+//
+// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "main.h"
+
+// check minor separately in order to avoid the possible creation of a zero-sized
+// array. Comes from a compilation error with gcc-3.4 or gcc-4 with -ansi -pedantic.
+// Another solution would be to declare the array like this: T m_data[Size==0?1:Size]; in ei_matrix_storage
+// but this is probably not bad to raise such an error at compile time...
+template<typename Scalar, int _Rows, int _Cols> struct CheckMinor
+{
+    typedef Matrix<Scalar, _Rows, _Cols> MatrixType;
+    CheckMinor(MatrixType& m1, int r1, int c1)
+    {
+        int rows = m1.rows();
+        int cols = m1.cols();
+
+        Matrix<Scalar, Dynamic, Dynamic> mi = m1.minor(0,0).eval();
+        VERIFY_IS_APPROX(mi, m1.block(1,1,rows-1,cols-1));
+        mi = m1.minor(r1,c1);
+        VERIFY_IS_APPROX(mi.transpose(), m1.transpose().minor(c1,r1));
+        //check operator(), both constant and non-constant, on minor()
+        m1.minor(r1,c1)(0,0) = m1.minor(0,0)(0,0);
+    }
+};
+
+template<typename Scalar> struct CheckMinor<Scalar,1,1>
+{
+    typedef Matrix<Scalar, 1, 1> MatrixType;
+    CheckMinor(MatrixType&, int, int) {}
+};
+
+template<typename MatrixType> void submatrices(const MatrixType& m)
+{
+  /* this test covers the following files:
+     Row.h Column.h Block.h Minor.h DiagonalCoeffs.h
+  */
+  typedef typename MatrixType::Scalar Scalar;
+  typedef typename MatrixType::RealScalar RealScalar;
+  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
+  typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
+  int rows = m.rows();
+  int cols = m.cols();
+
+  MatrixType m1 = MatrixType::Random(rows, cols),
+             m2 = MatrixType::Random(rows, cols),
+             m3(rows, cols),
+             ones = MatrixType::Ones(rows, cols),
+             square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
+                              ::Random(rows, rows);
+  VectorType v1 = VectorType::Random(rows);
+
+  Scalar s1 = ei_random<Scalar>();
+
+  int r1 = ei_random<int>(0,rows-1);
+  int r2 = ei_random<int>(r1,rows-1);
+  int c1 = ei_random<int>(0,cols-1);
+  int c2 = ei_random<int>(c1,cols-1);
+
+  //check row() and col()
+  VERIFY_IS_APPROX(m1.col(c1).transpose(), m1.transpose().row(c1));
+  VERIFY_IS_APPROX(square.row(r1).eigen2_dot(m1.col(c1)), (square.lazy() * m1.conjugate())(r1,c1));
+  //check operator(), both constant and non-constant, on row() and col()
+  m1.row(r1) += s1 * m1.row(r2);
+  m1.col(c1) += s1 * m1.col(c2);
+
+  //check block()
+  Matrix<Scalar,Dynamic,Dynamic> b1(1,1); b1(0,0) = m1(r1,c1);
+  RowVectorType br1(m1.block(r1,0,1,cols));
+  VectorType bc1(m1.block(0,c1,rows,1));
+  VERIFY_IS_APPROX(b1, m1.block(r1,c1,1,1));
+  VERIFY_IS_APPROX(m1.row(r1), br1);
+  VERIFY_IS_APPROX(m1.col(c1), bc1);
+  //check operator(), both constant and non-constant, on block()
+  m1.block(r1,c1,r2-r1+1,c2-c1+1) = s1 * m2.block(0, 0, r2-r1+1,c2-c1+1);
+  m1.block(r1,c1,r2-r1+1,c2-c1+1)(r2-r1,c2-c1) = m2.block(0, 0, r2-r1+1,c2-c1+1)(0,0);
+
+  //check minor()
+  CheckMinor<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> checkminor(m1,r1,c1);
+
+  //check diagonal()
+  VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal());
+  m2.diagonal() = 2 * m1.diagonal();
+  m2.diagonal()[0] *= 3;
+  VERIFY_IS_APPROX(m2.diagonal()[0], static_cast<Scalar>(6) * m1.diagonal()[0]);
+
+  enum {
+    BlockRows = EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::RowsAtCompileTime,2),
+    BlockCols = EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::ColsAtCompileTime,5)
+  };
+  if (rows>=5 && cols>=8)
+  {
+    // test fixed block() as lvalue
+    m1.template block<BlockRows,BlockCols>(1,1) *= s1;
+    // test operator() on fixed block() both as constant and non-constant
+    m1.template block<BlockRows,BlockCols>(1,1)(0, 3) = m1.template block<2,5>(1,1)(1,2);
+    // check that fixed block() and block() agree
+    Matrix<Scalar,Dynamic,Dynamic> b = m1.template block<BlockRows,BlockCols>(3,3);
+    VERIFY_IS_APPROX(b, m1.block(3,3,BlockRows,BlockCols));
+  }
+
+  if (rows>2)
+  {
+    // test sub vectors
+    VERIFY_IS_APPROX(v1.template start<2>(), v1.block(0,0,2,1));
+    VERIFY_IS_APPROX(v1.template start<2>(), v1.start(2));
+    VERIFY_IS_APPROX(v1.template start<2>(), v1.segment(0,2));
+    VERIFY_IS_APPROX(v1.template start<2>(), v1.template segment<2>(0));
+    int i = rows-2;
+    VERIFY_IS_APPROX(v1.template end<2>(), v1.block(i,0,2,1));
+    VERIFY_IS_APPROX(v1.template end<2>(), v1.end(2));
+    VERIFY_IS_APPROX(v1.template end<2>(), v1.segment(i,2));
+    VERIFY_IS_APPROX(v1.template end<2>(), v1.template segment<2>(i));
+    i = ei_random(0,rows-2);
+    VERIFY_IS_APPROX(v1.segment(i,2), v1.template segment<2>(i));
+  }
+
+  // stress some basic stuffs with block matrices
+  VERIFY(ei_real(ones.col(c1).sum()) == RealScalar(rows));
+  VERIFY(ei_real(ones.row(r1).sum()) == RealScalar(cols));
+
+  VERIFY(ei_real(ones.col(c1).eigen2_dot(ones.col(c2))) == RealScalar(rows));
+  VERIFY(ei_real(ones.row(r1).eigen2_dot(ones.row(r2))) == RealScalar(cols));
+}
+
+void test_eigen2_submatrices()
+{
+  for(int i = 0; i < g_repeat; i++) {
+    CALL_SUBTEST_1( submatrices(Matrix<float, 1, 1>()) );
+    CALL_SUBTEST_2( submatrices(Matrix4d()) );
+    CALL_SUBTEST_3( submatrices(MatrixXcf(3, 3)) );
+    CALL_SUBTEST_4( submatrices(MatrixXi(8, 12)) );
+    CALL_SUBTEST_5( submatrices(MatrixXcd(20, 20)) );
+    CALL_SUBTEST_6( submatrices(MatrixXf(20, 20)) );
+  }
+}