Added angle adjust control loop.
diff --git a/frc971/control_loops/python/angle_adjust.py b/frc971/control_loops/python/angle_adjust.py
new file mode 100755
index 0000000..ed04198
--- /dev/null
+++ b/frc971/control_loops/python/angle_adjust.py
@@ -0,0 +1,89 @@
+#!/usr/bin/python
+
+import control_loop
+import numpy
+import sys
+from matplotlib import pylab
+
+class AngleAdjust(control_loop.ControlLoop):
+ def __init__(self):
+ super(AngleAdjust, self).__init__("AngleAdjust")
+ # Stall Torque in N m
+ self.stall_torque = .428
+ # Stall Current in Amps
+ self.stall_current = 63.8
+ # Free Speed in RPM
+ self.free_speed = 16000.0
+ # Free Current in Amps
+ self.free_current = 1.2
+ # Moment of inertia of the angle adjust about the shooter's pivot in kg m^2
+ self.J = 0.41085133
+ # Resistance of the motor
+ self.R = 12.0 / self.stall_current
+ # Motor velocity constant
+ self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
+ (12.0 - self.R * self.free_current))
+ # Torque constant
+ self.Kt = self.stall_torque / self.stall_current
+ # Gear ratio of the gearbox multiplied by the ratio of the radii of
+ # the output and the angle adjust curve, which is essentially another gear.
+ self.G = (1.0 / 50.0) * (0.01905 / 0.41964)
+ # Control loop time step
+ self.dt = 0.01
+
+ # State feedback matrices
+ self.A_continuous = numpy.matrix(
+ [[0, 1],
+ [0, -self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
+ self.B_continuous = numpy.matrix(
+ [[0],
+ [self.Kt / (self.J * self.G * self.R)]])
+ self.C = numpy.matrix([[1, 0]])
+ self.D = numpy.matrix([[0]])
+
+ self.ContinuousToDiscrete(self.A_continuous, self.B_continuous,
+ self.dt, self.C)
+
+ self.PlaceControllerPoles([.89, .85])
+
+ self.rpl = .05
+ self.ipl = 0.008
+ self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
+ self.rpl - 1j * self.ipl])
+
+ self.U_max = numpy.matrix([[12.0]])
+ self.U_min = numpy.matrix([[-12.0]])
+
+def main(argv):
+ # Simulate the response of the system to a step input.
+ angle_adjust = AngleAdjust()
+ simulated_x = []
+ for _ in xrange(100):
+ angle_adjust.Update(numpy.matrix([[12.0]]))
+ simulated_x.append(angle_adjust.X[0, 0])
+
+ pylab.plot(range(100), simulated_x)
+ pylab.show()
+
+ # Simulate the closed loop response of the system to a step input.
+ angle_adjust = AngleAdjust()
+ close_loop_x = []
+ R = numpy.matrix([[1.0], [0.0]])
+ for _ in xrange(100):
+ U = numpy.clip(angle_adjust.K * (R - angle_adjust.X_hat), angle_adjust.U_min, angle_adjust.U_max)
+ angle_adjust.UpdateObserver(U)
+ angle_adjust.Update(U)
+ close_loop_x.append(angle_adjust.X[0, 0])
+
+ pylab.plot(range(100), close_loop_x)
+ pylab.show()
+
+ # Write the generated constants out to a file.
+ if len(argv) != 3:
+ print "Expected .cc file name and .h file name"
+ else:
+ angle_adjust.DumpHeaderFile(argv[1])
+ angle_adjust.DumpCppFile(argv[2], argv[1])
+
+if __name__ == '__main__':
+ sys.exit(main(sys.argv))