Squashed 'third_party/eigen/' changes from 61d72f6..cf794d3


Change-Id: I9b814151b01f49af6337a8605d0c42a3a1ed4c72
git-subtree-dir: third_party/eigen
git-subtree-split: cf794d3b741a6278df169e58461f8529f43bce5d
diff --git a/test/sparse_basic.cpp b/test/sparse_basic.cpp
index ce41d71..d0ef722 100644
--- a/test/sparse_basic.cpp
+++ b/test/sparse_basic.cpp
@@ -9,22 +9,28 @@
 // Public License v. 2.0. If a copy of the MPL was not distributed
 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 
+static long g_realloc_count = 0;
+#define EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN g_realloc_count++;
+
 #include "sparse.h"
 
 template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
 {
-  typedef typename SparseMatrixType::Index Index;
-  typedef Matrix<Index,2,1> Vector2;
+  typedef typename SparseMatrixType::StorageIndex StorageIndex;
+  typedef Matrix<StorageIndex,2,1> Vector2;
   
   const Index rows = ref.rows();
   const Index cols = ref.cols();
+  //const Index inner = ref.innerSize();
+  //const Index outer = ref.outerSize();
+
   typedef typename SparseMatrixType::Scalar Scalar;
+  typedef typename SparseMatrixType::RealScalar RealScalar;
   enum { Flags = SparseMatrixType::Flags };
 
   double density = (std::max)(8./(rows*cols), 0.01);
   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
   typedef Matrix<Scalar,Dynamic,1> DenseVector;
-  typedef Matrix<Scalar,1,Dynamic> RowDenseVector;
   Scalar eps = 1e-6;
 
   Scalar s1 = internal::random<Scalar>();
@@ -37,94 +43,22 @@
     std::vector<Vector2> nonzeroCoords;
     initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
 
-    if (zeroCoords.size()==0 || nonzeroCoords.size()==0)
-      return;
-
     // test coeff and coeffRef
-    for (int i=0; i<(int)zeroCoords.size(); ++i)
+    for (std::size_t i=0; i<zeroCoords.size(); ++i)
     {
       VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
       if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value)
-        VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 );
+        VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[i].x(),zeroCoords[i].y()) = 5 );
     }
     VERIFY_IS_APPROX(m, refMat);
 
-    m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
-    refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
+    if(!nonzeroCoords.empty()) {
+      m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
+      refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
+    }
 
     VERIFY_IS_APPROX(m, refMat);
-      
-      // test InnerIterators and Block expressions
-      for (int t=0; t<10; ++t)
-      {
-        int j = internal::random<int>(0,cols-1);
-        int i = internal::random<int>(0,rows-1);
-        int w = internal::random<int>(1,cols-j-1);
-        int h = internal::random<int>(1,rows-i-1);
 
-        VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
-        for(int c=0; c<w; c++)
-        {
-          VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c));
-          for(int r=0; r<h; r++)
-          {
-            VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
-            VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c));
-          }
-        }
-        for(int r=0; r<h; r++)
-        {
-          VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
-          for(int c=0; c<w; c++)
-          {
-            VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
-            VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c));
-          }
-        }
-        
-        VERIFY_IS_APPROX(m.middleCols(j,w), refMat.middleCols(j,w));
-        VERIFY_IS_APPROX(m.middleRows(i,h), refMat.middleRows(i,h));
-        for(int r=0; r<h; r++)
-        {
-          VERIFY_IS_APPROX(m.middleCols(j,w).row(r), refMat.middleCols(j,w).row(r));
-          VERIFY_IS_APPROX(m.middleRows(i,h).row(r), refMat.middleRows(i,h).row(r));
-          for(int c=0; c<w; c++)
-          {
-            VERIFY_IS_APPROX(m.col(c).coeff(r), refMat.col(c).coeff(r));
-            VERIFY_IS_APPROX(m.row(r).coeff(c), refMat.row(r).coeff(c));
-            
-            VERIFY_IS_APPROX(m.middleCols(j,w).coeff(r,c), refMat.middleCols(j,w).coeff(r,c));
-            VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c));
-            if(m.middleCols(j,w).coeff(r,c) != Scalar(0))
-            {
-              VERIFY_IS_APPROX(m.middleCols(j,w).coeffRef(r,c), refMat.middleCols(j,w).coeff(r,c));
-            }
-            if(m.middleRows(i,h).coeff(r,c) != Scalar(0))
-            {
-              VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c));
-            }
-          }
-        }
-        for(int c=0; c<w; c++)
-        {
-          VERIFY_IS_APPROX(m.middleCols(j,w).col(c), refMat.middleCols(j,w).col(c));
-          VERIFY_IS_APPROX(m.middleRows(i,h).col(c), refMat.middleRows(i,h).col(c));
-        }
-      }
-
-      for(int c=0; c<cols; c++)
-      {
-        VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
-        VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
-      }
-
-      for(int r=0; r<rows; r++)
-      {
-        VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
-        VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
-      }
-      
-      
       // test assertion
       VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 );
       VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 );
@@ -135,17 +69,31 @@
       DenseMatrix m1(rows,cols);
       m1.setZero();
       SparseMatrixType m2(rows,cols);
-      if(internal::random<int>()%2)
-        m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
+      bool call_reserve = internal::random<int>()%2;
+      Index nnz = internal::random<int>(1,int(rows)/2);
+      if(call_reserve)
+      {
+        if(internal::random<int>()%2)
+          m2.reserve(VectorXi::Constant(m2.outerSize(), int(nnz)));
+        else
+          m2.reserve(m2.outerSize() * nnz);
+      }
+      g_realloc_count = 0;
       for (Index j=0; j<cols; ++j)
       {
-        for (Index k=0; k<rows/2; ++k)
+        for (Index k=0; k<nnz; ++k)
         {
           Index i = internal::random<Index>(0,rows-1);
           if (m1.coeff(i,j)==Scalar(0))
             m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
         }
       }
+      
+      if(call_reserve && !SparseMatrixType::IsRowMajor)
+      {
+        VERIFY(g_realloc_count==0);
+      }
+      
       m2.finalize();
       VERIFY_IS_APPROX(m2,m1);
     }
@@ -179,9 +127,9 @@
       DenseMatrix m1(rows,cols);
       m1.setZero();
       SparseMatrixType m2(rows,cols);
-      VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? m2.innerSize() : std::max<int>(1,m2.innerSize()/8)));
+      VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? int(m2.innerSize()) : std::max<int>(1,int(m2.innerSize())/8)));
       m2.reserve(r);
-      for (int k=0; k<rows*cols; ++k)
+      for (Index k=0; k<rows*cols; ++k)
       {
         Index i = internal::random<Index>(0,rows-1);
         Index j = internal::random<Index>(0,cols-1);
@@ -195,110 +143,46 @@
       VERIFY_IS_APPROX(m2,m1);
     }
 
-  // test innerVector()
-  {
-    DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
-    SparseMatrixType m2(rows, rows);
-    initSparse<Scalar>(density, refMat2, m2);
-    Index j0 = internal::random<Index>(0,rows-1);
-    Index j1 = internal::random<Index>(0,rows-1);
-    if(SparseMatrixType::IsRowMajor)
-      VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.row(j0));
-    else
-      VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0));
-
-    if(SparseMatrixType::IsRowMajor)
-      VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.row(j0)+refMat2.row(j1));
-    else
-      VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1));
-
-    SparseMatrixType m3(rows,rows);
-    m3.reserve(VectorXi::Constant(rows,rows/2));
-    for(Index j=0; j<rows; ++j)
-      for(Index k=0; k<j; ++k)
-        m3.insertByOuterInner(j,k) = k+1;
-    for(Index j=0; j<rows; ++j)
-    {
-      VERIFY(j==numext::real(m3.innerVector(j).nonZeros()));
-      if(j>0)
-        VERIFY(j==numext::real(m3.innerVector(j).lastCoeff()));
-    }
-    m3.makeCompressed();
-    for(Index j=0; j<rows; ++j)
-    {
-      VERIFY(j==numext::real(m3.innerVector(j).nonZeros()));
-      if(j>0)
-        VERIFY(j==numext::real(m3.innerVector(j).lastCoeff()));
-    }
-
-    //m2.innerVector(j0) = 2*m2.innerVector(j1);
-    //refMat2.col(j0) = 2*refMat2.col(j1);
-    //VERIFY_IS_APPROX(m2, refMat2);
-  }
-
-  // test innerVectors()
-  {
-    DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
-    SparseMatrixType m2(rows, rows);
-    initSparse<Scalar>(density, refMat2, m2);
-    if(internal::random<float>(0,1)>0.5) m2.makeCompressed();
-    
-    Index j0 = internal::random<Index>(0,rows-2);
-    Index j1 = internal::random<Index>(0,rows-2);
-    Index n0 = internal::random<Index>(1,rows-(std::max)(j0,j1));
-    if(SparseMatrixType::IsRowMajor)
-      VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(j0,0,n0,cols));
-    else
-      VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0));
-    if(SparseMatrixType::IsRowMajor)
-      VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
-                       refMat2.middleRows(j0,n0)+refMat2.middleRows(j1,n0));
-    else
-      VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
-                      refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
-    
-    VERIFY_IS_APPROX(m2, refMat2);
-    
-    m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0);
-    if(SparseMatrixType::IsRowMajor)
-      refMat2.middleRows(j0,n0) = (refMat2.middleRows(j0,n0) + refMat2.middleRows(j1,n0)).eval();
-    else
-      refMat2.middleCols(j0,n0) = (refMat2.middleCols(j0,n0) + refMat2.middleCols(j1,n0)).eval();
-    
-    VERIFY_IS_APPROX(m2, refMat2);
-    
-  }
-  
   // test basic computations
   {
-    DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
-    DenseMatrix refM2 = DenseMatrix::Zero(rows, rows);
-    DenseMatrix refM3 = DenseMatrix::Zero(rows, rows);
-    DenseMatrix refM4 = DenseMatrix::Zero(rows, rows);
-    SparseMatrixType m1(rows, rows);
-    SparseMatrixType m2(rows, rows);
-    SparseMatrixType m3(rows, rows);
-    SparseMatrixType m4(rows, rows);
+    DenseMatrix refM1 = DenseMatrix::Zero(rows, cols);
+    DenseMatrix refM2 = DenseMatrix::Zero(rows, cols);
+    DenseMatrix refM3 = DenseMatrix::Zero(rows, cols);
+    DenseMatrix refM4 = DenseMatrix::Zero(rows, cols);
+    SparseMatrixType m1(rows, cols);
+    SparseMatrixType m2(rows, cols);
+    SparseMatrixType m3(rows, cols);
+    SparseMatrixType m4(rows, cols);
     initSparse<Scalar>(density, refM1, m1);
     initSparse<Scalar>(density, refM2, m2);
     initSparse<Scalar>(density, refM3, m3);
     initSparse<Scalar>(density, refM4, m4);
 
+    if(internal::random<bool>())
+      m1.makeCompressed();
+
+    Index m1_nnz = m1.nonZeros();
+
+    VERIFY_IS_APPROX(m1*s1, refM1*s1);
     VERIFY_IS_APPROX(m1+m2, refM1+refM2);
     VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
     VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2));
     VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);
-
-    VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
-    VERIFY_IS_APPROX(m1/=s1, refM1/=s1);
-
-    VERIFY_IS_APPROX(m1+=m2, refM1+=refM2);
-    VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);
+    VERIFY_IS_APPROX(m4=m1/s1, refM1/s1);
+    VERIFY_IS_EQUAL(m4.nonZeros(), m1_nnz);
 
     if(SparseMatrixType::IsRowMajor)
       VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0)));
     else
-      VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.col(0).dot(refM2.row(0)));
+      VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.col(0)), refM1.col(0).dot(refM2.col(0)));
+
+    DenseVector rv = DenseVector::Random(m1.cols());
+    DenseVector cv = DenseVector::Random(m1.rows());
+    Index r = internal::random<Index>(0,m1.rows()-2);
+    Index c = internal::random<Index>(0,m1.cols()-1);
+    VERIFY_IS_APPROX(( m1.template block<1,Dynamic>(r,0,1,m1.cols()).dot(rv)) , refM1.row(r).dot(rv));
+    VERIFY_IS_APPROX(m1.row(r).dot(rv), refM1.row(r).dot(rv));
+    VERIFY_IS_APPROX(m1.col(c).dot(cv), refM1.col(c).dot(cv));
 
     VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate());
     VERIFY_IS_APPROX(m1.real(), refM1.real());
@@ -306,105 +190,167 @@
     refM4.setRandom();
     // sparse cwise* dense
     VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4));
+    // dense cwise* sparse
+    VERIFY_IS_APPROX(refM4.cwiseProduct(m3), refM4.cwiseProduct(refM3));
 //     VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
 
+    VERIFY_IS_APPROX(refM4 + m3, refM4 + refM3);
+    VERIFY_IS_APPROX(m3 + refM4, refM3 + refM4);
+    VERIFY_IS_APPROX(refM4 - m3, refM4 - refM3);
+    VERIFY_IS_APPROX(m3 - refM4, refM3 - refM4);
+    VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
+    VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
+    VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3.cwiseProduct(m3)).eval(), RealScalar(0.5)*refM4 + refM3.cwiseProduct(refM3));
+
+    VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
+    VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
+    VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
+    VERIFY_IS_APPROX(((refM3+m3)+RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM3 + (refM3+refM3));
+    VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (refM3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
+    VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+refM3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
+
+
+    VERIFY_IS_APPROX(m1.sum(), refM1.sum());
+
+    m4 = m1; refM4 = m4;
+
+    VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
+    VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
+    VERIFY_IS_APPROX(m1/=s1, refM1/=s1);
+    VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
+
+    VERIFY_IS_APPROX(m1+=m2, refM1+=refM2);
+    VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);
+
+    if (rows>=2 && cols>=2)
+    {
+      VERIFY_RAISES_ASSERT( m1 += m1.innerVector(0) );
+      VERIFY_RAISES_ASSERT( m1 -= m1.innerVector(0) );
+      VERIFY_RAISES_ASSERT( refM1 -= m1.innerVector(0) );
+      VERIFY_RAISES_ASSERT( refM1 += m1.innerVector(0) );
+    }
+    m1 = m4; refM1 = refM4;
+
     // test aliasing
     VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1));
+    VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
+    m1 = m4; refM1 = refM4;
     VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval()));
+    VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
+    m1 = m4; refM1 = refM4;
     VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval()));
+    VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
+    m1 = m4; refM1 = refM4;
     VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1));
+    VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
+    m1 = m4; refM1 = refM4;
+
+    if(m1.isCompressed())
+    {
+      VERIFY_IS_APPROX(m1.coeffs().sum(), m1.sum());
+      m1.coeffs() += s1;
+      for(Index j = 0; j<m1.outerSize(); ++j)
+        for(typename SparseMatrixType::InnerIterator it(m1,j); it; ++it)
+          refM1(it.row(), it.col()) += s1;
+      VERIFY_IS_APPROX(m1, refM1);
+    }
+
+    // and/or
+    {
+      typedef SparseMatrix<bool, SparseMatrixType::Options, typename SparseMatrixType::StorageIndex> SpBool;
+      SpBool mb1 = m1.real().template cast<bool>();
+      SpBool mb2 = m2.real().template cast<bool>();
+      VERIFY_IS_EQUAL(mb1.template cast<int>().sum(), refM1.real().template cast<bool>().count());
+      VERIFY_IS_EQUAL((mb1 && mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count());
+      VERIFY_IS_EQUAL((mb1 || mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() || refM2.real().template cast<bool>()).count());
+      SpBool mb3 = mb1 && mb2;
+      if(mb1.coeffs().all() && mb2.coeffs().all())
+      {
+        VERIFY_IS_EQUAL(mb3.nonZeros(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count());
+      }
+    }
+  }
+
+  // test reverse iterators
+  {
+    DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
+    SparseMatrixType m2(rows, cols);
+    initSparse<Scalar>(density, refMat2, m2);
+    std::vector<Scalar> ref_value(m2.innerSize());
+    std::vector<Index> ref_index(m2.innerSize());
+    if(internal::random<bool>())
+      m2.makeCompressed();
+    for(Index j = 0; j<m2.outerSize(); ++j)
+    {
+      Index count_forward = 0;
+
+      for(typename SparseMatrixType::InnerIterator it(m2,j); it; ++it)
+      {
+        ref_value[ref_value.size()-1-count_forward] = it.value();
+        ref_index[ref_index.size()-1-count_forward] = it.index();
+        count_forward++;
+      }
+      Index count_reverse = 0;
+      for(typename SparseMatrixType::ReverseInnerIterator it(m2,j); it; --it)
+      {
+        VERIFY_IS_APPROX( std::abs(ref_value[ref_value.size()-count_forward+count_reverse])+1, std::abs(it.value())+1);
+        VERIFY_IS_EQUAL( ref_index[ref_index.size()-count_forward+count_reverse] , it.index());
+        count_reverse++;
+      }
+      VERIFY_IS_EQUAL(count_forward, count_reverse);
+    }
   }
 
   // test transpose
   {
-    DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
-    SparseMatrixType m2(rows, rows);
+    DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
+    SparseMatrixType m2(rows, cols);
     initSparse<Scalar>(density, refMat2, m2);
     VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
     VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
 
     VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint());
-  }
-
-  
-  
-  // test generic blocks
-  {
-    DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
-    SparseMatrixType m2(rows, rows);
-    initSparse<Scalar>(density, refMat2, m2);
-    Index j0 = internal::random<Index>(0,rows-2);
-    Index j1 = internal::random<Index>(0,rows-2);
-    Index n0 = internal::random<Index>(1,rows-(std::max)(j0,j1));
-    if(SparseMatrixType::IsRowMajor)
-      VERIFY_IS_APPROX(m2.block(j0,0,n0,cols), refMat2.block(j0,0,n0,cols));
-    else
-      VERIFY_IS_APPROX(m2.block(0,j0,rows,n0), refMat2.block(0,j0,rows,n0));
     
-    if(SparseMatrixType::IsRowMajor)
-      VERIFY_IS_APPROX(m2.block(j0,0,n0,cols)+m2.block(j1,0,n0,cols),
-                      refMat2.block(j0,0,n0,cols)+refMat2.block(j1,0,n0,cols));
-    else
-      VERIFY_IS_APPROX(m2.block(0,j0,rows,n0)+m2.block(0,j1,rows,n0),
-                      refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
-      
-    Index i = internal::random<Index>(0,m2.outerSize()-1);
-    if(SparseMatrixType::IsRowMajor) {
-      m2.innerVector(i) = m2.innerVector(i) * s1;
-      refMat2.row(i) = refMat2.row(i) * s1;
-      VERIFY_IS_APPROX(m2,refMat2);
-    } else {
-      m2.innerVector(i) = m2.innerVector(i) * s1;
-      refMat2.col(i) = refMat2.col(i) * s1;
-      VERIFY_IS_APPROX(m2,refMat2);
-    }
-    
-    VERIFY_IS_APPROX(DenseVector(m2.col(j0)), refMat2.col(j0));
-    VERIFY_IS_APPROX(m2.col(j0), refMat2.col(j0));
-    
-    VERIFY_IS_APPROX(RowDenseVector(m2.row(j0)), refMat2.row(j0));
-    VERIFY_IS_APPROX(m2.row(j0), refMat2.row(j0));
-    
-    VERIFY_IS_APPROX(m2.block(j0,j1,n0,n0), refMat2.block(j0,j1,n0,n0));
-    VERIFY_IS_APPROX((2*m2).block(j0,j1,n0,n0), (2*refMat2).block(j0,j1,n0,n0));
+    // check isApprox handles opposite storage order
+    typename Transpose<SparseMatrixType>::PlainObject m3(m2);
+    VERIFY(m2.isApprox(m3));
   }
 
   // test prune
   {
-    SparseMatrixType m2(rows, rows);
-    DenseMatrix refM2(rows, rows);
+    SparseMatrixType m2(rows, cols);
+    DenseMatrix refM2(rows, cols);
     refM2.setZero();
     int countFalseNonZero = 0;
     int countTrueNonZero = 0;
-    for (Index j=0; j<m2.outerSize(); ++j)
+    m2.reserve(VectorXi::Constant(m2.outerSize(), int(m2.innerSize())));
+    for (Index j=0; j<m2.cols(); ++j)
     {
-      m2.startVec(j);
-      for (Index i=0; i<m2.innerSize(); ++i)
+      for (Index i=0; i<m2.rows(); ++i)
       {
         float x = internal::random<float>(0,1);
-        if (x<0.1)
+        if (x<0.1f)
         {
           // do nothing
         }
-        else if (x<0.5)
+        else if (x<0.5f)
         {
           countFalseNonZero++;
-          m2.insertBackByOuterInner(j,i) = Scalar(0);
+          m2.insert(i,j) = Scalar(0);
         }
         else
         {
           countTrueNonZero++;
-          m2.insertBackByOuterInner(j,i) = Scalar(1);
-          if(SparseMatrixType::IsRowMajor)
-            refM2(j,i) = Scalar(1);
-          else
-            refM2(i,j) = Scalar(1);
+          m2.insert(i,j) = Scalar(1);
+          refM2(i,j) = Scalar(1);
         }
       }
     }
-    m2.finalize();
+    if(internal::random<bool>())
+      m2.makeCompressed();
     VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros());
-    VERIFY_IS_APPROX(m2, refM2);
+    if(countTrueNonZero>0)
+      VERIFY_IS_APPROX(m2, refM2);
     m2.prune(Scalar(1));
     VERIFY(countTrueNonZero==m2.nonZeros());
     VERIFY_IS_APPROX(m2, refM2);
@@ -412,29 +358,74 @@
 
   // test setFromTriplets
   {
-    typedef Triplet<Scalar,Index> TripletType;
+    typedef Triplet<Scalar,StorageIndex> TripletType;
     std::vector<TripletType> triplets;
-    int ntriplets = rows*cols;
+    Index ntriplets = rows*cols;
     triplets.reserve(ntriplets);
-    DenseMatrix refMat(rows,cols);
-    refMat.setZero();
-    for(int i=0;i<ntriplets;++i)
+    DenseMatrix refMat_sum  = DenseMatrix::Zero(rows,cols);
+    DenseMatrix refMat_prod = DenseMatrix::Zero(rows,cols);
+    DenseMatrix refMat_last = DenseMatrix::Zero(rows,cols);
+
+    for(Index i=0;i<ntriplets;++i)
     {
-      Index r = internal::random<Index>(0,rows-1);
-      Index c = internal::random<Index>(0,cols-1);
+      StorageIndex r = internal::random<StorageIndex>(0,StorageIndex(rows-1));
+      StorageIndex c = internal::random<StorageIndex>(0,StorageIndex(cols-1));
       Scalar v = internal::random<Scalar>();
       triplets.push_back(TripletType(r,c,v));
-      refMat(r,c) += v;
+      refMat_sum(r,c) += v;
+      if(std::abs(refMat_prod(r,c))==0)
+        refMat_prod(r,c) = v;
+      else
+        refMat_prod(r,c) *= v;
+      refMat_last(r,c) = v;
     }
     SparseMatrixType m(rows,cols);
     m.setFromTriplets(triplets.begin(), triplets.end());
-    VERIFY_IS_APPROX(m, refMat);
+    VERIFY_IS_APPROX(m, refMat_sum);
+
+    m.setFromTriplets(triplets.begin(), triplets.end(), std::multiplies<Scalar>());
+    VERIFY_IS_APPROX(m, refMat_prod);
+#if (defined(__cplusplus) && __cplusplus >= 201103L)
+    m.setFromTriplets(triplets.begin(), triplets.end(), [] (Scalar,Scalar b) { return b; });
+    VERIFY_IS_APPROX(m, refMat_last);
+#endif
+  }
+  
+  // test Map
+  {
+    DenseMatrix refMat2(rows, cols), refMat3(rows, cols);
+    SparseMatrixType m2(rows, cols), m3(rows, cols);
+    initSparse<Scalar>(density, refMat2, m2);
+    initSparse<Scalar>(density, refMat3, m3);
+    {
+      Map<SparseMatrixType> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
+      Map<SparseMatrixType> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr());
+      VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
+      VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
+    }
+    {
+      MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
+      MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr());
+      VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
+      VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
+    }
+
+    Index i = internal::random<Index>(0,rows-1);
+    Index j = internal::random<Index>(0,cols-1);
+    m2.coeffRef(i,j) = 123;
+    if(internal::random<bool>())
+      m2.makeCompressed();
+    Map<SparseMatrixType> mapMat2(rows, cols, m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(),  m2.innerNonZeroPtr());
+    VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(123));
+    VERIFY_IS_EQUAL(mapMat2.coeff(i,j),Scalar(123));
+    mapMat2.coeffRef(i,j) = -123;
+    VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(-123));
   }
 
   // test triangularView
   {
-    DenseMatrix refMat2(rows, rows), refMat3(rows, rows);
-    SparseMatrixType m2(rows, rows), m3(rows, rows);
+    DenseMatrix refMat2(rows, cols), refMat3(rows, cols);
+    SparseMatrixType m2(rows, cols), m3(rows, cols);
     initSparse<Scalar>(density, refMat2, m2);
     refMat3 = refMat2.template triangularView<Lower>();
     m3 = m2.template triangularView<Lower>();
@@ -444,13 +435,15 @@
     m3 = m2.template triangularView<Upper>();
     VERIFY_IS_APPROX(m3, refMat3);
 
-    refMat3 = refMat2.template triangularView<UnitUpper>();
-    m3 = m2.template triangularView<UnitUpper>();
-    VERIFY_IS_APPROX(m3, refMat3);
+    {
+      refMat3 = refMat2.template triangularView<UnitUpper>();
+      m3 = m2.template triangularView<UnitUpper>();
+      VERIFY_IS_APPROX(m3, refMat3);
 
-    refMat3 = refMat2.template triangularView<UnitLower>();
-    m3 = m2.template triangularView<UnitLower>();
-    VERIFY_IS_APPROX(m3, refMat3);
+      refMat3 = refMat2.template triangularView<UnitLower>();
+      m3 = m2.template triangularView<UnitLower>();
+      VERIFY_IS_APPROX(m3, refMat3);
+    }
 
     refMat3 = refMat2.template triangularView<StrictlyUpper>();
     m3 = m2.template triangularView<StrictlyUpper>();
@@ -459,6 +452,10 @@
     refMat3 = refMat2.template triangularView<StrictlyLower>();
     m3 = m2.template triangularView<StrictlyLower>();
     VERIFY_IS_APPROX(m3, refMat3);
+
+    // check sparse-triangular to dense
+    refMat3 = m2.template triangularView<StrictlyUpper>();
+    VERIFY_IS_APPROX(refMat3, DenseMatrix(refMat2.template triangularView<StrictlyUpper>()));
   }
   
   // test selfadjointView
@@ -470,6 +467,19 @@
     refMat3 = refMat2.template selfadjointView<Lower>();
     m3 = m2.template selfadjointView<Lower>();
     VERIFY_IS_APPROX(m3, refMat3);
+
+    refMat3 += refMat2.template selfadjointView<Lower>();
+    m3 += m2.template selfadjointView<Lower>();
+    VERIFY_IS_APPROX(m3, refMat3);
+
+    refMat3 -= refMat2.template selfadjointView<Lower>();
+    m3 -= m2.template selfadjointView<Lower>();
+    VERIFY_IS_APPROX(m3, refMat3);
+
+    // selfadjointView only works for square matrices:
+    SparseMatrixType m4(rows, rows+1);
+    VERIFY_RAISES_ASSERT(m4.template selfadjointView<Lower>());
+    VERIFY_RAISES_ASSERT(m4.template selfadjointView<Upper>());
   }
   
   // test sparseView
@@ -478,28 +488,59 @@
     SparseMatrixType m2(rows, rows);
     initSparse<Scalar>(density, refMat2, m2);
     VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval());
+
+    // sparse view on expressions:
+    VERIFY_IS_APPROX((s1*m2).eval(), (s1*refMat2).sparseView().eval());
+    VERIFY_IS_APPROX((m2+m2).eval(), (refMat2+refMat2).sparseView().eval());
+    VERIFY_IS_APPROX((m2*m2).eval(), (refMat2.lazyProduct(refMat2)).sparseView().eval());
+    VERIFY_IS_APPROX((m2*m2).eval(), (refMat2*refMat2).sparseView().eval());
   }
 
   // test diagonal
   {
-    DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
-    SparseMatrixType m2(rows, rows);
+    DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
+    SparseMatrixType m2(rows, cols);
     initSparse<Scalar>(density, refMat2, m2);
     VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval());
+    DenseVector d = m2.diagonal();
+    VERIFY_IS_APPROX(d, refMat2.diagonal().eval());
+    d = m2.diagonal().array();
+    VERIFY_IS_APPROX(d, refMat2.diagonal().eval());
+    VERIFY_IS_APPROX(const_cast<const SparseMatrixType&>(m2).diagonal(), refMat2.diagonal().eval());
+    
+    initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag);
+    m2.diagonal()      += refMat2.diagonal();
+    refMat2.diagonal() += refMat2.diagonal();
+    VERIFY_IS_APPROX(m2, refMat2);
+  }
+  
+  // test diagonal to sparse
+  {
+    DenseVector d = DenseVector::Random(rows);
+    DenseMatrix refMat2 = d.asDiagonal();
+    SparseMatrixType m2(rows, rows);
+    m2 = d.asDiagonal();
+    VERIFY_IS_APPROX(m2, refMat2);
+    SparseMatrixType m3(d.asDiagonal());
+    VERIFY_IS_APPROX(m3, refMat2);
+    refMat2 += d.asDiagonal();
+    m2 += d.asDiagonal();
+    VERIFY_IS_APPROX(m2, refMat2);
   }
   
   // test conservative resize
   {
-      std::vector< std::pair<Index,Index> > inc;
-      inc.push_back(std::pair<Index,Index>(-3,-2));
-      inc.push_back(std::pair<Index,Index>(0,0));
-      inc.push_back(std::pair<Index,Index>(3,2));
-      inc.push_back(std::pair<Index,Index>(3,0));
-      inc.push_back(std::pair<Index,Index>(0,3));
+      std::vector< std::pair<StorageIndex,StorageIndex> > inc;
+      if(rows > 3 && cols > 2)
+        inc.push_back(std::pair<StorageIndex,StorageIndex>(-3,-2));
+      inc.push_back(std::pair<StorageIndex,StorageIndex>(0,0));
+      inc.push_back(std::pair<StorageIndex,StorageIndex>(3,2));
+      inc.push_back(std::pair<StorageIndex,StorageIndex>(3,0));
+      inc.push_back(std::pair<StorageIndex,StorageIndex>(0,3));
       
       for(size_t i = 0; i< inc.size(); i++) {
-        Index incRows = inc[i].first;
-        Index incCols = inc[i].second;
+        StorageIndex incRows = inc[i].first;
+        StorageIndex incCols = inc[i].second;
         SparseMatrixType m1(rows, cols);
         DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols);
         initSparse<Scalar>(density, refMat1, m1);
@@ -529,22 +570,120 @@
     SparseMatrixType m1(rows, rows);
     m1.setIdentity();
     VERIFY_IS_APPROX(m1, refMat1);
+    for(int k=0; k<rows*rows/4; ++k)
+    {
+      Index i = internal::random<Index>(0,rows-1);
+      Index j = internal::random<Index>(0,rows-1);
+      Scalar v = internal::random<Scalar>();
+      m1.coeffRef(i,j) = v;
+      refMat1.coeffRef(i,j) = v;
+      VERIFY_IS_APPROX(m1, refMat1);
+      if(internal::random<Index>(0,10)<2)
+        m1.makeCompressed();
+    }
+    m1.setIdentity();
+    refMat1.setIdentity();
+    VERIFY_IS_APPROX(m1, refMat1);
+  }
+
+  // test array/vector of InnerIterator
+  {
+    typedef typename SparseMatrixType::InnerIterator IteratorType;
+
+    DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
+    SparseMatrixType m2(rows, cols);
+    initSparse<Scalar>(density, refMat2, m2);
+    IteratorType static_array[2];
+    static_array[0] = IteratorType(m2,0);
+    static_array[1] = IteratorType(m2,m2.outerSize()-1);
+    VERIFY( static_array[0] || m2.innerVector(static_array[0].outer()).nonZeros() == 0 );
+    VERIFY( static_array[1] || m2.innerVector(static_array[1].outer()).nonZeros() == 0 );
+    if(static_array[0] && static_array[1])
+    {
+      ++(static_array[1]);
+      static_array[1] = IteratorType(m2,0);
+      VERIFY( static_array[1] );
+      VERIFY( static_array[1].index() == static_array[0].index() );
+      VERIFY( static_array[1].outer() == static_array[0].outer() );
+      VERIFY( static_array[1].value() == static_array[0].value() );
+    }
+
+    std::vector<IteratorType> iters(2);
+    iters[0] = IteratorType(m2,0);
+    iters[1] = IteratorType(m2,m2.outerSize()-1);
   }
 }
 
+
+template<typename SparseMatrixType>
+void big_sparse_triplet(Index rows, Index cols, double density) {
+  typedef typename SparseMatrixType::StorageIndex StorageIndex;
+  typedef typename SparseMatrixType::Scalar Scalar;
+  typedef Triplet<Scalar,Index> TripletType;
+  std::vector<TripletType> triplets;
+  double nelements = density * rows*cols;
+  VERIFY(nelements>=0 && nelements <  NumTraits<StorageIndex>::highest());
+  Index ntriplets = Index(nelements);
+  triplets.reserve(ntriplets);
+  Scalar sum = Scalar(0);
+  for(Index i=0;i<ntriplets;++i)
+  {
+    Index r = internal::random<Index>(0,rows-1);
+    Index c = internal::random<Index>(0,cols-1);
+    // use positive values to prevent numerical cancellation errors in sum
+    Scalar v = numext::abs(internal::random<Scalar>());
+    triplets.push_back(TripletType(r,c,v));
+    sum += v;
+  }
+  SparseMatrixType m(rows,cols);
+  m.setFromTriplets(triplets.begin(), triplets.end());
+  VERIFY(m.nonZeros() <= ntriplets);
+  VERIFY_IS_APPROX(sum, m.sum());
+}
+
+
 void test_sparse_basic()
 {
   for(int i = 0; i < g_repeat; i++) {
-    int s = Eigen::internal::random<int>(1,50);
-    EIGEN_UNUSED_VARIABLE(s);
+    int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200);
+    if(Eigen::internal::random<int>(0,4) == 0) {
+      r = c; // check square matrices in 25% of tries
+    }
+    EIGEN_UNUSED_VARIABLE(r+c);
+    CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(1, 1)) ));
     CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) ));
-    CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(s, s)) ));
-    CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(s, s)) ));
-    CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(s, s)) ));
-    CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,ColMajor,long int>(s, s)) ));
-    CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,RowMajor,long int>(s, s)) ));
+    CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(r, c)) ));
+    CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(r, c)) ));
+    CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(r, c)) ));
+    CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,ColMajor,long int>(r, c)) ));
+    CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,RowMajor,long int>(r, c)) ));
     
-    CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(s), short(s))) ));
-    CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(s), short(s))) ));
+    r = Eigen::internal::random<int>(1,100);
+    c = Eigen::internal::random<int>(1,100);
+    if(Eigen::internal::random<int>(0,4) == 0) {
+      r = c; // check square matrices in 25% of tries
+    }
+    
+    CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) ));
+    CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) ));
   }
+
+  // Regression test for bug 900: (manually insert higher values here, if you have enough RAM):
+  CALL_SUBTEST_3((big_sparse_triplet<SparseMatrix<float, RowMajor, int> >(10000, 10000, 0.125)));
+  CALL_SUBTEST_4((big_sparse_triplet<SparseMatrix<double, ColMajor, long int> >(10000, 10000, 0.125)));
+
+  // Regression test for bug 1105
+#ifdef EIGEN_TEST_PART_7
+  {
+    int n = Eigen::internal::random<int>(200,600);
+    SparseMatrix<std::complex<double>,0, long> mat(n, n);
+    std::complex<double> val;
+
+    for(int i=0; i<n; ++i)
+    {
+      mat.coeffRef(i, i%(n/10)) = val;
+      VERIFY(mat.data().allocatedSize()<20*n);
+    }
+  }
+#endif
 }